The Agent Assist Summarization provides conversation summaries to your agents after each conversation completes. The summaries help agents create their conversation notes to review and understand end-user communication history.
There are two ways to implement the Summarization feature:
- You can train a custom model (chat or voice).
- You can use the out-of-the-box baseline model (chat and voice).
This page provides the steps required to implement the baseline model.
For example, here is a sample input conversation:
A baseline model summary output about the conversation might look similar to the following:
Configure a conversation profile
A conversation profile configures a set of parameters that control the
suggestions made to an agent during a conversation. The following steps create a
ConversationProfile
with a
HumanAgentAssistantConfig
object.
Create a conversation profile
To create a conversation profile, do the following:
- Call the
create
method on theConversationProfile
resource. - Provide a name for the new conversation profile.
- Enter your Google Cloud project ID.
- Enter your model ID. To use the baseline summarization model, don't
specify the model ID. Instead, set
baseline_model_version
to1.0
. - In the
CreateConversationProfileRequest
for the suggestion feature, specifyCONVERSATION_SUMMARIZATION
for chat orCONVERSATION_SUMMARIZATION_VOICE
for voice.
Baseline model example for voice
The following is a JSON example that uses a baseline summarization model for voice:
{ "parent": "projects/PROJECT_ID/locations/global", "conversationProfile": { "displayName": "CONVERSATION_PROFILE_NAME", "humanAgentAssistantConfig": { "humanAgentSuggestionConfig": { "featureConfigs": [{ "suggestionFeature": { "type": "CONVERSATION_SUMMARIZATION_VOICE" }, "conversationModelConfig": { "baseline_model_version": "1.0", } }] } }, "languageCode": "en-US" } }
The response is a ConversationProfile
object containing the conversation
profile name
:
{ "name": "projects/PROJECT_ID/locations/global/conversationProfiles/CONVERSATION_PROFILE_ID", "displayName": "CONVERSATION_PROFILE_NAME", "automatedAgentConfig": { }, "humanAgentAssistantConfig": { "notificationConfig": { }, "humanAgentSuggestionConfig": { "featureConfigs": [{ "suggestionFeature": { "type": "CONVERSATION_SUMMARIZATION_VOICE" }, "conversationModelConfig": { } }] }, "messageAnalysisConfig": { } }, "languageCode": "en-US", "createTime": "2022-06-06T21:06:46.841816Z", "updateTime": "2022-06-06T21:06:46.841816Z", "projectNumber": "344549229138" }
Baseline model example for chat
The following is a JSON example that uses a baseline summarization model for chat:
{ "parent": "projects/PROJECT_ID/locations/global", "conversationProfile": { "displayName": "CONVERSATION_PROFILE_NAME", "humanAgentAssistantConfig": { "humanAgentSuggestionConfig": { "featureConfigs": [{ "suggestionFeature": { "type": "CONVERSATION_SUMMARIZATION" }, "conversationModelConfig": { "baseline_model_version": "1.0", } }] } }, "languageCode": "en-US" } }
The response is a ConversationProfile
object containing the conversation
profile name
:
{ "name": "projects/PROJECT_ID/locations/global/conversationProfiles/CONVERSATION_PROFILE_ID", "displayName": "CONVERSATION_PROFILE_NAME", "automatedAgentConfig": { }, "humanAgentAssistantConfig": { "notificationConfig": { }, "humanAgentSuggestionConfig": { "featureConfigs": [{ "suggestionFeature": { "type": "CONVERSATION_SUMMARIZATION" }, "conversationModelConfig": { } }] }, "messageAnalysisConfig": { } }, "languageCode": "en-US", "createTime": "2022-06-06T21:06:46.841816Z", "updateTime": "2022-06-06T21:06:46.841816Z", "projectNumber": "344549229138" }
Handle conversations at runtime
Conversations are handled the same at runtime whether you're using the baseline model or a custom model. See the Summarization custom model documentation for details.