Bibliotecas de cliente da Pesquisa de produtos da API Vision

Nesta página, mostramos como começar a usar as bibliotecas de cliente do Cloud para a pesquisa de produtos da API Vision. As bibliotecas de cliente facilitam o acesso a APIs do Google Cloud por meio de uma linguagem com suporte. É possível usar as APIs do Google Cloud diretamente fazendo solicitações brutas ao servidor, mas as bibliotecas de cliente oferecem simplificações que reduzem significativamente a quantidade de código que você precisa escrever.

Saiba mais sobre as bibliotecas de cliente do Cloud e as bibliotecas de cliente de APIs do Google mais antigas em Explicação sobre as bibliotecas de cliente.

Instale a biblioteca de cliente

C++

Consulte Como configurar um ambiente de desenvolvimento em C++ para detalhes sobre os requisitos dessa biblioteca de cliente e dependências de instalação.

C#

Se você estiver usando o Visual Studio 2017 ou uma versão posterior, abra a janela do gerenciador de pacotes nuget e digite o seguinte:

Install-Package Google.Apis

Se você estiver usando as ferramentas da interface de linha de comando do .NET Core para instalar as dependências, execute o seguinte comando:

dotnet add package Google.Apis

Para mais informações, consulte Como configurar um ambiente de desenvolvimento em C#.

Go

go get cloud.google.com/go/vision/apiv1

Para mais informações, consulte Como configurar um ambiente de desenvolvimento do Go.

Java

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.50.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-vision</artifactId>
  </dependency>
</dependencies>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-vision:3.51.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-vision" % "3.51.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Para mais informações, consulte Como configurar um ambiente de desenvolvimento em Java.

Node.js

npm install --save @google-cloud/vision

Para mais informações, consulte Como configurar um ambiente de desenvolvimento em Node.js.

PHP

composer require google/apiclient

Para mais informações, consulte Como usar o PHP no Google Cloud.

Python

pip install --upgrade google-cloud-vision

Para mais informações, consulte Como configurar um ambiente de desenvolvimento em Python.

Ruby

gem install google-api-client

Para mais informações, consulte Como configurar um ambiente de desenvolvimento em Ruby.

Configurar a autenticação

Para autenticar as chamadas feitas às APIs do Google Cloud, as bibliotecas de cliente dão suporte ao Application Default Credentials (ADC). As bibliotecas procuram as credenciais em um conjunto de locais definidos e as usam para autenticar as solicitações feitas à API. Com o ADC, é possível disponibilizar credenciais para seu aplicativo em uma variedade de ambientes, como desenvolvimento ou produção local, sem precisar modificar o código do aplicativo.

Em ambientes de produção, a maneira como você configura o ADC depende do serviço e do contexto. Para mais informações, consulte Configurar o Application Default Credentials.

Para um ambiente de desenvolvimento local, é possível configurar o ADC com as credenciais associadas à sua Conta do Google:

  1. Install the Google Cloud CLI, then initialize it by running the following command:

    gcloud init
  2. If you're using a local shell, then create local authentication credentials for your user account:

    gcloud auth application-default login

    You don't need to do this if you're using Cloud Shell.

    Uma tela de login será exibida. Após o login, suas credenciais são armazenadas no arquivo de credenciais local usado pelo ADC.

Usar a biblioteca de cliente

O exemplo a seguir mostra como usar a biblioteca de cliente.

C++


#include "google/cloud/vision/v1/image_annotator_client.h"
#include <iostream>

int main(int argc, char* argv[]) try {
  auto constexpr kDefaultUri =
      "gs://cloud-samples-data/vision/label/wakeupcat.jpg";
  if (argc > 2) {
    std::cerr << "Usage: " << argv[0] << " [gcs-uri]\n"
              << "  The gcs-uri must be in gs://... format. It defaults to "
              << kDefaultUri << "\n";
    return 1;
  }
  auto uri = std::string{argc == 2 ? argv[1] : kDefaultUri};

  namespace vision = ::google::cloud::vision_v1;
  auto client =
      vision::ImageAnnotatorClient(vision::MakeImageAnnotatorConnection());

  // Define the image we want to annotate
  google::cloud::vision::v1::Image image;
  image.mutable_source()->set_image_uri(uri);
  // Create a request to annotate this image with Request text annotations for a
  // file stored in GCS.
  google::cloud::vision::v1::AnnotateImageRequest request;
  *request.mutable_image() = std::move(image);
  request.add_features()->set_type(
      google::cloud::vision::v1::Feature::TEXT_DETECTION);

  google::cloud::vision::v1::BatchAnnotateImagesRequest batch_request;
  *batch_request.add_requests() = std::move(request);
  auto batch = client.BatchAnnotateImages(batch_request);
  if (!batch) throw std::move(batch).status();

  // Find the longest annotation and print it
  auto result = std::string{};
  for (auto const& response : batch->responses()) {
    for (auto const& annotation : response.text_annotations()) {
      if (result.size() < annotation.description().size()) {
        result = annotation.description();
      }
    }
  }
  std::cout << "The image contains this text: " << result << "\n";

  return 0;
} catch (google::cloud::Status const& status) {
  std::cerr << "google::cloud::Status thrown: " << status << "\n";
  return 1;
}

Go


import (
	"context"
	"fmt"
	"io"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProductsURI searches for products from a product set similar to products in an image file on GCS.
func getSimilarProductsURI(w io.Writer, projectID string, location string, productSetID string, productCategory string, imageURI string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	image := vision.NewImageFromURI(imageURI)

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

/**
 * Search similar products to image in local file.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param filePath - Local file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws IOException - on I/O errors.
 */
public static void getSimilarProductsFile(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String filePath,
    String filter)
    throws IOException {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.format(projectId, computeRegion, productSetId);

    // Read the image as a stream of bytes.
    File imgPath = new File(filePath);
    byte[] content = Files.readAllBytes(imgPath.toPath());

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    // The input image can be a HTTPS link or Raw image bytes.
    // Example:
    // To use HTTP link replace with below code
    //  ImageSource source = ImageSource.newBuilder().setImageUri(imageUri).build();
    //  Image image = Image.newBuilder().setSource(source).build();
    Image image = Image.newBuilder().setContent(ByteString.copyFrom(content)).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsGcs(
  projectId,
  location,
  productSetId,
  productCategory,
  filePath,
  filter
) {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'Your Google Cloud project Id';
  // const location = 'A compute region name';
  // const productSetId = 'Id of the product set';
  // const productCategory = 'Category of the product';
  // const filePath = 'Local file path of the image to be searched';
  // const filter = 'Condition to be applied on the labels';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );

  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {source: {gcsImageUri: filePath}},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  console.log(request.image);

  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  console.log('\nSimilar product information:');

  const results = response['responses'][0]['productSearchResults']['results'];
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsGcs();

Python

from google.cloud import vision

def get_similar_products_uri(
    project_id, location, product_set_id, product_category, image_uri, filter
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        image_uri: Cloud Storage location of image to be searched.
        filter: Condition to be applied on the labels.
        Example for filter: (color = red OR color = blue) AND style = kids
        It will search on all products with the following labels:
        color:red AND style:kids
        color:blue AND style:kids
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Create annotate image request along with product search feature.
    image_source = vision.ImageSource(image_uri=image_uri)
    image = vision.Image(source=image_source)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(image, image_context=image_context)

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


Outros recursos

C++

A lista a seguir contém links para mais recursos relacionados à biblioteca de cliente para C++:

C#

A lista a seguir contém links para mais recursos relacionados à biblioteca de cliente para C#:

Go

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para Go:

Java

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para Java:

Node.js

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para Node.js:

PHP

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para PHP:

Python

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para Python:

Ruby

Confira na lista a seguir os links para mais recursos relacionados à biblioteca de cliente para Ruby:

Faça um teste

Se você começou a usar o Google Cloud agora, crie uma conta para avaliar o desempenho da API Cloud Vision em situações reais. Clientes novos também recebem US$ 300 em créditos para executar, testar e implantar cargas de trabalho.

Faça uma avaliação gratuita da API Cloud Vision