Ejecutar la app para la detección de rostro

Ejecuta la app que dibuja cuadros alrededor de los rostros detectados en una imagen.

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Java

Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.

/** Annotates an image using the Vision API. */
public static void main(String[] args) throws IOException, GeneralSecurityException {
  if (args.length != 2) {
    System.err.println("Usage:");
    System.err.printf(
        "\tjava %s inputImagePath outputImagePath\n", FaceDetectApp.class.getCanonicalName());
    System.exit(1);
  }
  Path inputPath = Paths.get(args[0]);
  Path outputPath = Paths.get(args[1]);
  if (!outputPath.toString().toLowerCase().endsWith(".jpg")) {
    System.err.println("outputImagePath must have the file extension 'jpg'.");
    System.exit(1);
  }

  FaceDetectApp app = new FaceDetectApp(getVisionService());
  List<FaceAnnotation> faces = app.detectFaces(inputPath, MAX_RESULTS);
  System.out.printf("Found %d face%s\n", faces.size(), faces.size() == 1 ? "" : "s");
  System.out.printf("Writing to file %s\n", outputPath);
  app.writeWithFaces(inputPath, outputPath, faces);
}

Node.js

Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.

async function main(inputFile, outputFile) {
  const PImage = require('pureimage');
  outputFile = outputFile || 'out.png';
  const faces = await detectFaces(inputFile);
  console.log('Highlighting...');
  await highlightFaces(inputFile, faces, outputFile, PImage);
  console.log('Finished!');
}

PHP

Antes de probar este código de muestra, sigue las instrucciones de configuración para PHP que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para PHP.

call_user_func($imageWriteFunc[$ext], $outputImage, $outFile);
printf('Output image written to %s' . PHP_EOL, $outFile);

Python

Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.

def main(input_filename, output_filename, max_results):
    with open(input_filename, 'rb') as image:
        faces = detect_face(image, max_results)
        print('Found {} face{}'.format(
            len(faces), '' if len(faces) == 1 else 's'))

        print('Writing to file {}'.format(output_filename))
        # Reset the file pointer, so we can read the file again
        image.seek(0)
        highlight_faces(image, faces, output_filename)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.