Detect text in a document

Draw boxes around the text detected in a document.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Python

Before trying this sample, follow the Python setup instructions in the Vision quickstart using client libraries. For more information, see the Vision Python API reference documentation.

To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import argparse
from enum import Enum

from google.cloud import vision
from PIL import Image, ImageDraw



class FeatureType(Enum):
    PAGE = 1
    BLOCK = 2
    PARA = 3
    WORD = 4
    SYMBOL = 5


def draw_boxes(image, bounds, color):
    """Draws a border around the image using the hints in the vector list.

    Args:
        image: the input image object.
        bounds: list of coordinates for the boxes.
        color: the color of the box.

    Returns:
        An image with colored bounds added.
    """
    draw = ImageDraw.Draw(image)

    for bound in bounds:
        draw.polygon(
            [
                bound.vertices[0].x,
                bound.vertices[0].y,
                bound.vertices[1].x,
                bound.vertices[1].y,
                bound.vertices[2].x,
                bound.vertices[2].y,
                bound.vertices[3].x,
                bound.vertices[3].y,
            ],
            None,
            color,
        )
    return image


def get_document_bounds(image_file, feature):
    """Finds the document bounds given an image and feature type.

    Args:
        image_file: path to the image file.
        feature: feature type to detect.

    Returns:
        List of coordinates for the corresponding feature type.
    """
    client = vision.ImageAnnotatorClient()

    bounds = []

    with open(image_file, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.document_text_detection(image=image)
    document = response.full_text_annotation

    # Collect specified feature bounds by enumerating all document features
    for page in document.pages:
        for block in page.blocks:
            for paragraph in block.paragraphs:
                for word in paragraph.words:
                    for symbol in word.symbols:
                        if feature == FeatureType.SYMBOL:
                            bounds.append(symbol.bounding_box)

                    if feature == FeatureType.WORD:
                        bounds.append(word.bounding_box)

                if feature == FeatureType.PARA:
                    bounds.append(paragraph.bounding_box)

            if feature == FeatureType.BLOCK:
                bounds.append(block.bounding_box)

    # The list `bounds` contains the coordinates of the bounding boxes.
    return bounds




def render_doc_text(filein, fileout):
    """Outlines document features (blocks, paragraphs and words) given an image.

    Args:
        filein: path to the input image.
        fileout: path to the output image.
    """
    image = Image.open(filein)
    bounds = get_document_bounds(filein, FeatureType.BLOCK)
    draw_boxes(image, bounds, "blue")
    bounds = get_document_bounds(filein, FeatureType.PARA)
    draw_boxes(image, bounds, "red")
    bounds = get_document_bounds(filein, FeatureType.WORD)
    draw_boxes(image, bounds, "yellow")

    if fileout != 0:
        image.save(fileout)
    else:
        image.show()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("detect_file", help="The image for text detection.")
    parser.add_argument("-out_file", help="Optional output file", default=0)
    args = parser.parse_args()

    render_doc_text(args.detect_file, args.out_file)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.