Detecta a una persona en un video almacenado en Cloud Storage.
Páginas de documentación que incluyen esta muestra de código
Para ver la muestra de código usada en contexto, consulta la siguiente documentación:
Muestra de código
Java
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
public class DetectPersonGcs {
public static void detectPersonGcs() throws Exception {
// TODO(developer): Replace these variables before running the sample.
String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
detectPersonGcs(gcsUri);
}
// Detects people in a video stored in Google Cloud Storage using
// the Cloud Video Intelligence API.
public static void detectPersonGcs(String gcsUri) throws Exception {
try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
VideoIntelligenceServiceClient.create()) {
// Reads a local video file and converts it to base64.
PersonDetectionConfig personDetectionConfig =
PersonDetectionConfig.newBuilder()
// Must set includeBoundingBoxes to true to get poses and attributes.
.setIncludeBoundingBoxes(true)
.setIncludePoseLandmarks(true)
.setIncludeAttributes(true)
.build();
VideoContext videoContext =
VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();
AnnotateVideoRequest request =
AnnotateVideoRequest.newBuilder()
.setInputUri(gcsUri)
.addFeatures(Feature.PERSON_DETECTION)
.setVideoContext(videoContext)
.build();
// Detects people in a video
OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
videoIntelligenceServiceClient.annotateVideoAsync(request);
System.out.println("Waiting for operation to complete...");
AnnotateVideoResponse response = future.get();
// Get the first response, since we sent only one video.
VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);
// Annotations for list of people detected, tracked and recognized in video.
for (PersonDetectionAnnotation personDetectionAnnotation :
annotationResult.getPersonDetectionAnnotationsList()) {
System.out.print("Person detected:\n");
for (Track track : personDetectionAnnotation.getTracksList()) {
VideoSegment segment = track.getSegment();
System.out.printf(
"\tStart: %d.%.0fs\n",
segment.getStartTimeOffset().getSeconds(),
segment.getStartTimeOffset().getNanos() / 1e6);
System.out.printf(
"\tEnd: %d.%.0fs\n",
segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);
// Each segment includes timestamped objects that include characteristic--e.g. clothes,
// posture of the person detected.
TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);
// Attributes include unique pieces of clothing, poses (i.e., body landmarks)
// of the person detected.
for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
System.out.printf(
"\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
}
// Landmarks in person detection include body parts.
for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
System.out.printf(
"\tLandmark: %s; Vertex: %f, %f\n",
attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
}
}
}
}
}
}
Node.js
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';
// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();
async function detectPersonGCS() {
const request = {
inputUri: gcsUri,
features: ['PERSON_DETECTION'],
videoContext: {
personDetectionConfig: {
// Must set includeBoundingBoxes to true to get poses and attributes.
includeBoundingBoxes: true,
includePoseLandmarks: true,
includeAttributes: true,
},
},
};
// Detects faces in a video
// We get the first result because we only process 1 video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
// Gets annotations for video
const personAnnotations =
results[0].annotationResults[0].personDetectionAnnotations;
for (const {tracks} of personAnnotations) {
console.log('Person detected:');
for (const {segment, timestampedObjects} of tracks) {
console.log(
`\tStart: ${segment.startTimeOffset.seconds}` +
`.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
);
console.log(
`\tEnd: ${segment.endTimeOffset.seconds}.` +
`${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
);
// Each segment includes timestamped objects that
// include characteristic--e.g. clothes, posture
// of the person detected.
const [firstTimestampedObject] = timestampedObjects;
// Attributes include unique pieces of clothing, poses (i.e., body
// landmarks) of the person detected.
for (const {name, value} of firstTimestampedObject.attributes) {
console.log(`\tAttribute: ${name}; Value: ${value}`);
}
// Landmarks in person detection include body parts.
for (const {name, point} of firstTimestampedObject.landmarks) {
console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
}
}
}
}
detectPersonGCS();
Python
from google.cloud import videointelligence_v1 as videointelligence
def detect_person(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
"""Detects people in a video."""
client = videointelligence.VideoIntelligenceServiceClient()
# Configure the request
config = videointelligence.types.PersonDetectionConfig(
include_bounding_boxes=True,
include_attributes=True,
include_pose_landmarks=True,
)
context = videointelligence.types.VideoContext(person_detection_config=config)
# Start the asynchronous request
operation = client.annotate_video(
request={
"features": [videointelligence.Feature.PERSON_DETECTION],
"input_uri": gcs_uri,
"video_context": context,
}
)
print("\nProcessing video for person detection annotations.")
result = operation.result(timeout=300)
print("\nFinished processing.\n")
# Retrieve the first result, because a single video was processed.
annotation_result = result.annotation_results[0]
for annotation in annotation_result.person_detection_annotations:
print("Person detected:")
for track in annotation.tracks:
print(
"Segment: {}s to {}s".format(
track.segment.start_time_offset.seconds
+ track.segment.start_time_offset.microseconds / 1e6,
track.segment.end_time_offset.seconds
+ track.segment.end_time_offset.microseconds / 1e6,
)
)
# Each segment includes timestamped objects that include
# characteristics - -e.g.clothes, posture of the person detected.
# Grab the first timestamped object
timestamped_object = track.timestamped_objects[0]
box = timestamped_object.normalized_bounding_box
print("Bounding box:")
print("\tleft : {}".format(box.left))
print("\ttop : {}".format(box.top))
print("\tright : {}".format(box.right))
print("\tbottom: {}".format(box.bottom))
# Attributes include unique pieces of clothing,
# poses, or hair color.
print("Attributes:")
for attribute in timestamped_object.attributes:
print(
"\t{}:{} {}".format(
attribute.name, attribute.value, attribute.confidence
)
)
# Landmarks in person detection include body parts such as
# left_shoulder, right_ear, and right_ankle
print("Landmarks:")
for landmark in timestamped_object.landmarks:
print(
"\t{}: {} (x={}, y={})".format(
landmark.name,
landmark.confidence,
landmark.point.x, # Normalized vertex
landmark.point.y, # Normalized vertex
)
)
¿Qué sigue?
Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.