Membuat teks menggunakan gambar dari lokal dan Google Cloud Storage

Contoh ini menunjukkan cara membuat teks menggunakan gambar lokal dan gambar di Google Cloud Storage

Mempelajari lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Go Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"os"

	genai "google.golang.org/genai"
)

// generateWithMultiImg shows how to generate text using multiple image inputs.
func generateWithMultiImg(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	// TODO(Developer): Update the path to file (image source:
	//   https://storage.googleapis.com/cloud-samples-data/generative-ai/image/latte.jpg )
	imageBytes, err := os.ReadFile("./latte.jpg")
	if err != nil {
		return fmt.Errorf("failed to read image: %w", err)
	}

	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write an advertising jingle based on the items in both images."},
			{FileData: &genai.FileData{
				// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
				FileURI:  "gs://cloud-samples-data/generative-ai/image/scones.jpg",
				MIMEType: "image/jpeg",
			}},
			{InlineData: &genai.Blob{
				Data:     imageBytes,
				MIMEType: "image/jpeg",
			}},
		}},
	}
	modelName := "gemini-2.5-flash"

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here's an advertising jingle inspired by the blueberry scones, coffee, flowers, chocolate cake, and latte:
	//
	// (Upbeat, jazzy music)
	// ...

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextGenerationWithMultiImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    // Content from Google Cloud Storage
    String gcsFileImagePath = "gs://cloud-samples-data/generative-ai/image/scones.jpg";
    String localImageFilePath = "resources/latte.jpg";
    generateContent(modelId, gcsFileImagePath, localImageFilePath);
  }

  // Generates text with multiple images
  public static String generateContent(
      String modelId, String gcsFileImagePath, String localImageFilePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // Read content from a local file.
      byte[] localFileImgBytes = Files.readAllBytes(Paths.get(localImageFilePath));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("Generate a list of all the objects contained in both images"),
                  Part.fromBytes(localFileImgBytes, "image/jpeg"),
                  Part.fromUri(gcsFileImagePath, "image/jpeg")),
              null);

      System.out.print(response.text());
      // Example response:
      // Okay, here's the list of objects present in both images:
      //
      // **Image 1 (Scones):**
      //
      // *   Scones
      // *   Plate
      // *   Jam/Preserve
      // *   Cream/Butter
      // *   Table/Surface
      // *   Napkin/Cloth (possibly)
      //
      // **Image 2 (Latte):**
      //
      // *   Latte/Coffee cup
      // *   Saucer
      // *   Spoon
      // *   Table/Surface
      // *   Foam/Latte art
      //
      // **Objects potentially in both (depending on interpretation and specific items):**
      //
      // *   Plate/Saucer (both are serving dishes)
      // *   Table/Surface
      return response.text();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const image1 = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',
      mimeType: 'image/jpeg',
    },
  };

  const image2 = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/fruit.png',
      mimeType: 'image/png',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [
      image1,
      image2,
      'Generate a list of all the objects contained in both images.',
    ],
  });

  console.log(response.text);

  return response.text;
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

# Read content from GCS
gcs_file_img_path = "gs://cloud-samples-data/generative-ai/image/scones.jpg"

# Read content from a local file
with open("test_data/latte.jpg", "rb") as f:
    local_file_img_bytes = f.read()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Generate a list of all the objects contained in both images.",
        Part.from_uri(file_uri=gcs_file_img_path, mime_type="image/jpeg"),
        Part.from_bytes(data=local_file_img_bytes, mime_type="image/jpeg"),
    ],
)
print(response.text)
# Example response:
# Okay, here's the list of objects present in both images:
# ...

Langkah berikutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat Google Cloud browser contoh.