Membuat teks dari video

Contoh ini menunjukkan cara menggunakan Gemini API untuk membuat teks dari video

Contoh kode

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;

public class MultimodalVideoInput
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "What's in the video?" },
                        new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/video/animals.mp4" }}
                    }
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }
        return fullText.ToString();
    }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function sendMultiModalPromptWithVideo(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // Pass multimodal prompt
  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            fileData: {
              fileUri: 'gs://cloud-samples-data/video/animals.mp4',
              mimeType: 'video/mp4',
            },
          },
          {
            text: 'What is in the video?',
          },
        ],
      },
    ],
  };

  // Create the response
  const response = await generativeVisionModel.generateContent(request);
  // Wait for the response to complete
  const aggregatedResponse = await response.response;
  // Select the text from the response
  const fullTextResponse =
    aggregatedResponse.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Langkah berikutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat Google Cloud browser contoh.