Membuat konten dengan panggilan fungsi

Membuat konten dengan panggilan fungsi. Contoh ini menunjukkan skenario modalitas teks dengan satu fungsi dan satu petunjuk.

Jelajahi lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import vertexai
from vertexai.generative_models import (
    Content,
    FunctionDeclaration,
    GenerationConfig,
    GenerativeModel,
    Part,
    Tool,
)

def generate_function_call(prompt: str, project_id: str, location: str) -> tuple:
    # Initialize Vertex AI
    vertexai.init(project=project_id, location=location)

    # Initialize Gemini model
    model = GenerativeModel("gemini-1.0-pro")

    # Specify a function declaration and parameters for an API request
    get_current_weather_func = FunctionDeclaration(
        name="get_current_weather",
        description="Get the current weather in a given location",
        # Function parameters are specified in OpenAPI JSON schema format
        parameters={
            "type": "object",
            "properties": {"location": {"type": "string", "description": "Location"}},
        },
    )

    # Define a tool that includes the above get_current_weather_func
    weather_tool = Tool(
        function_declarations=[get_current_weather_func],
    )

    # Define the user's prompt in a Content object that we can reuse in model calls
    user_prompt_content = Content(
        role="user",
        parts=[
            Part.from_text(prompt),
        ],
    )

    # Send the prompt and instruct the model to generate content using the Tool that you just created
    response = model.generate_content(
        user_prompt_content,
        generation_config=GenerationConfig(temperature=0),
        tools=[weather_tool],
    )
    response_function_call_content = response.candidates[0].content

    # Check the function name that the model responded with, and make an API call to an external system
    if (
        response.candidates[0].content.parts[0].function_call.name
        == "get_current_weather"
    ):
        # Extract the arguments to use in your API call
        location = (
            response.candidates[0].content.parts[0].function_call.args["location"]
        )

        # Here you can use your preferred method to make an API request to fetch the current weather, for example:
        # api_response = requests.post(weather_api_url, data={"location": location})

        # In this example, we'll use synthetic data to simulate a response payload from an external API
        api_response = """{ "location": "Boston, MA", "temperature": 38, "description": "Partly Cloudy",
                        "icon": "partly-cloudy", "humidity": 65, "wind": { "speed": 10, "direction": "NW" } }"""

    # Return the API response to Gemini so it can generate a model response or request another function call
    response = model.generate_content(
        [
            user_prompt_content,  # User prompt
            response_function_call_content,  # Function call response
            Content(
                parts=[
                    Part.from_function_response(
                        name="get_current_weather",
                        response={
                            "content": api_response,  # Return the API response to Gemini
                        },
                    )
                ],
            ),
        ],
        tools=[weather_tool],
    )
    # Get the model summary response
    summary = response.candidates[0].content.parts[0].text

    return summary, response

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.