Llamada a función con el modelo de IA de Gemini

En la muestra de código, se indica cómo usar los modelos generativos de Vertex AI para realizar la llamada a función.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import vertexai
from vertexai.preview.generative_models import (
    FunctionDeclaration,
    GenerativeModel,
    Tool,
    ToolConfig,
)

# Initialize Vertex AI
# TODO (developer): update project & location
vertexai.init(project=PROJECT_ID, location="us-central1")

# Specify a function declaration and parameters for an API request
get_product_sku_func = FunctionDeclaration(
    name="get_product_sku",
    description="Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
    # Function parameters are specified in OpenAPI JSON schema format
    parameters={
        "type": "object",
        "properties": {
            "product_name": {"type": "string", "description": "Product name"}
        },
    },
)

# Specify another function declaration and parameters for an API request
get_store_location_func = FunctionDeclaration(
    name="get_store_location",
    description="Get the location of the closest store",
    # Function parameters are specified in OpenAPI JSON schema format
    parameters={
        "type": "object",
        "properties": {"location": {"type": "string", "description": "Location"}},
    },
)

# Define a tool that includes the above functions
retail_tool = Tool(
    function_declarations=[
        get_product_sku_func,
        get_store_location_func,
    ],
)

# Define a tool config for the above functions
retail_tool_config = ToolConfig(
    function_calling_config=ToolConfig.FunctionCallingConfig(
        # ANY mode forces the model to predict a function call
        mode=ToolConfig.FunctionCallingConfig.Mode.ANY,
        # List of functions that can be returned when the mode is ANY.
        # If the list is empty, any declared function can be returned.
        allowed_function_names=["get_product_sku"],
    )
)

model = GenerativeModel(
    model_name="gemini-1.5-flash-001",
    tools=[retail_tool],
    tool_config=retail_tool_config,
)
response = model.generate_content(
    "Do you have the Pixel 8 Pro 128GB in stock?",
)

print(response.text)
print(response.candidates[0].function_calls)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.