Mulai 29 April 2025, model Gemini 1.5 Pro dan Gemini 1.5 Flash tidak tersedia di project yang belum pernah menggunakan model ini, termasuk project baru. Untuk mengetahui detailnya, lihat
Versi dan siklus proses model.
Menyesuaikan model penyematan menggunakan parameter yang ditentukan
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Contoh kode ini menunjukkan cara menyetel model embedding menggunakan Vertex AI. Contoh ini menggunakan model terlatih dan menyesuaikannya pada set data tertentu.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["# Tune an embedding model using the specified parameters\n\nThis code sample demonstrates how to fine-tune an embedding model using Vertex AI. The sample uses a pre-trained model and tunes it on a specific dataset.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Tune text embeddings](/vertex-ai/generative-ai/docs/models/tune-embeddings)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import re\n\n from google.cloud.aiplatform import initializer as aiplatform_init\n from vertexai.language_models import TextEmbeddingModel\n\n\n def tune_embedding_model(\n api_endpoint: str,\n base_model_name: str = \"text-embedding-005\",\n corpus_path: str = \"gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/corpus.jsonl\",\n queries_path: str = \"gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/queries.jsonl\",\n train_label_path: str = \"gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/train.tsv\",\n test_label_path: str = \"gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/test.tsv\",\n ): # noqa: ANN201\n \"\"\"Tune an embedding model using the specified parameters.\n Args:\n api_endpoint (str): The API endpoint for the Vertex AI service.\n base_model_name (str): The name of the base model to use for tuning.\n corpus_path (str): GCS URI of the JSONL file containing the corpus data.\n queries_path (str): GCS URI of the JSONL file containing the queries data.\n train_label_path (str): GCS URI of the TSV file containing the training labels.\n test_label_path (str): GCS URI of the TSV file containing the test labels.\n \"\"\"\n match = re.search(r\"^(\\w+-\\w+)\", api_endpoint)\n location = match.group(1) if match else \"us-central1\"\n base_model = TextEmbeddingModel.from_pretrained(base_model_name)\n tuning_job = base_model.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.language_models._language_models._TunableModelMixin.html#vertexai_language_models__language_models__TunableModelMixin_tune_model(\n task_type=\"DEFAULT\",\n corpus_data=corpus_path,\n queries_data=queries_path,\n training_data=train_label_path,\n test_data=test_label_path,\n batch_size=128, # The batch size to use for training.\n train_steps=1000, # The number of training steps.\n tuned_model_location=location,\n output_dimensionality=768, # The dimensionality of the output embeddings.\n learning_rate_multiplier=1.0, # The multiplier for the learning rate.\n )\n return tuning_job\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]