Mulai 29 April 2025, model Gemini 1.5 Pro dan Gemini 1.5 Flash tidak tersedia di project yang belum pernah menggunakan model ini, termasuk project baru. Untuk mengetahui detailnya, lihat
Versi dan siklus proses model.
Membuat Embedding untuk Pengambilan Kode
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Contoh ini menunjukkan cara menggunakan model embedding teks Vertex AI untuk menghitung embedding untuk blok kode dan kueri untuk tugas pengambilan kode.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["# Generate Embeddings for Code Retrieval\n\nThis sample demonstrates how to use Vertex AI text embedding models to calculate embeddings for code blocks and queries for code retrieval tasks.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Choose an embeddings task type](/vertex-ai/generative-ai/docs/embeddings/task-types)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel\n\n MODEL_NAME = \"gemini-embedding-001\"\n DIMENSIONALITY = 3072\n\n\n def embed_text(\n texts: list[str] = [\"Retrieve a function that adds two numbers\"],\n task: str = \"CODE_RETRIEVAL_QUERY\",\n model_name: str = \"gemini-embedding-001\",\n dimensionality: int | None = 3072,\n ) -\u003e list[list[float]]:\n \"\"\"Embeds texts with a pre-trained, foundational model.\"\"\"\n model = TextEmbeddingModel.from_pretrained(model_name)\n kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}\n\n embeddings = []\n # gemini-embedding-001 takes one input at a time\n for text in texts:\n text_input = TextEmbeddingInput(text, task)\n embedding = model.get_embeddings([text_input], **kwargs)\n print(embedding)\n # Example response:\n # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]\n embeddings.append(embedding[0].values)\n\n return embeddings\n\n\n if __name__ == \"__main__\":\n # Embeds code block with a pre-trained, foundational model.\n # Using this function to calculate the embedding for corpus.\n texts = [\"Retrieve a function that adds two numbers\"]\n task = \"CODE_RETRIEVAL_QUERY\"\n code_block_embeddings = embed_text(\n texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY\n )\n\n # Embeds code retrieval with a pre-trained, foundational model.\n # Using this function to calculate the embedding for query.\n texts = [\n \"def func(a, b): return a + b\",\n \"def func(a, b): return a - b\",\n \"def func(a, b): return (a ** 2 + b ** 2) ** 0.5\",\n ]\n task = \"RETRIEVAL_DOCUMENT\"\n code_query_embeddings = embed_text(\n texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY\n )\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]