Vertex Generative AI SDK for Python
The Vertex Generative AI SDK helps developers use Google’s generative AI Gemini models to build AI-powered features and applications. The SDKs support use cases like the following:
Generate text from texts, images and videos (multimodal generation)
Build stateful multi-turn conversations (chat)
Function calling
Installation
To install the google-cloud-aiplatform Python package, run the following command:
pip3 install --upgrade --user "google-cloud-aiplatform>=1.38"
Usage
For detailed instructions, see quickstart and Introduction to multimodal classes in the Vertex AI SDK.
Imports:
import vertexai
Initialization:
vertexai.init(project='my-project', location='us-central1')
Basic generation:
from vertexai.generative_models import GenerativeModel
model = GenerativeModel("gemini-pro")
print(model.generate_content("Why is sky blue?"))
Using images and videos
from vertexai.generative_models import GenerativeModel, Image
vision_model = GenerativeModel("gemini-pro-vision")
# Local image
image = Image.load_from_file("image.jpg")
print(vision_model.generate_content(["What is shown in this image?", image]))
# Image from Cloud Storage
image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg")
print(vision_model.generate_content([image_part, "Describe this image?"]))
# Text and video
video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4")
print(vision_model.generate_content(["What is in the video? ", video_part]))
Chat
from vertexai.generative_models import GenerativeModel, Image
vision_model = GenerativeModel("gemini-ultra-vision")
vision_chat = vision_model.start_chat()
image = Image.load_from_file("image.jpg")
print(vision_chat.send_message(["I like this image.", image]))
print(vision_chat.send_message("What things do I like?."))
System instructions
from vertexai.generative_models import GenerativeModel
model = GenerativeModel(
"gemini-1.0-pro",
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
print(model.generate_content("Why is sky blue?"))
Function calling
# First, create tools that the model is can use to answer your questions.
# Describe a function by specifying it's schema (JsonSchema format)
get_current_weather_func = generative_models.FunctionDeclaration(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit",
]
}
},
"required": [
"location"
]
},
)
# Tool is a collection of related functions
weather_tool = generative_models.Tool(
function_declarations=[get_current_weather_func],
)
# Use tools in chat:
model = GenerativeModel(
"gemini-pro",
# You can specify tools when creating a model to avoid having to send them with every request.
tools=[weather_tool],
)
chat = model.start_chat()
# Send a message to the model. The model will respond with a function call.
print(chat.send_message("What is the weather like in Boston?"))
# Then send a function response to the model. The model will use it to answer.
print(chat.send_message(
Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather": "super nice"},
}
),
))
Automatic Function calling
Note: The FunctionDeclaration.from_func
converter does not support nested types for parameters. Please provide full FunctionDeclaration
instead.
from vertexai.preview.generative_models import GenerativeModel, Tool, FunctionDeclaration, AutomaticFunctionCallingResponder
# First, create functions that the model can use to answer your questions.
def get_current_weather(location: str, unit: str = "centigrade"):
"""Gets weather in the specified location.
Args:
location: The location for which to get the weather.
unit: Optional. Temperature unit. Can be Centigrade or Fahrenheit. Defaults to Centigrade.
"""
return dict(
location=location,
unit=unit,
weather="Super nice, but maybe a bit hot.",
)
# Infer function schema
get_current_weather_func = FunctionDeclaration.from_func(get_current_weather)
# Tool is a collection of related functions
weather_tool = Tool(
function_declarations=[get_current_weather_func],
)
# Use tools in chat:
model = GenerativeModel(
"gemini-pro",
# You can specify tools when creating a model to avoid having to send them with every request.
tools=[weather_tool],
)
# Activate automatic function calling:
afc_responder = AutomaticFunctionCallingResponder(
# Optional:
max_automatic_function_calls=5,
)
chat = model.start_chat(responder=afc_responder)
# Send a message to the model. The model will respond with a function call.
# The SDK will automatically call the requested function and respond to the model.
# The model will use the function call response to answer the original question.
print(chat.send_message("What is the weather like in Boston?"))
Evaluation
- To perform bring-your-own-response(BYOR) evaluation, provide the model responses in the
response
column in the dataset. If a pairwise metric is used for BYOR evaluation, provide the baseline model responses in thebaseline_model_response
column.
import pandas as pd
from vertexai.evaluation import EvalTask, MetricPromptTemplateExamples
eval_dataset = pd.DataFrame({
"prompt" : [...],
"reference": [...],
"response" : [...],
"baseline_model_response": [...],
})
eval_task = EvalTask(
dataset=eval_dataset,
metrics=[
"bleu",
"rouge_l_sum",
MetricPromptTemplateExamples.Pointwise.FLUENCY,
MetricPromptTemplateExamples.Pairwise.SAFETY
],
experiment="my-experiment",
)
eval_result = eval_task.evaluate(experiment_run_name="eval-experiment-run")
- To perform evaluation with Gemini model inference, specify the
model
parameter with aGenerativeModel
instance. The input column name to the model isprompt
and must be present in the dataset.
from vertexai.evaluation import EvalTask
from vertexai.generative_models import GenerativeModel
eval_dataset = pd.DataFrame({
"reference": [...],
"prompt" : [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=["exact_match", "bleu", "rouge_1", "rouge_l_sum"],
experiment="my-experiment",
).evaluate(
model=GenerativeModel("gemini-1.5-pro"),
experiment_run_name="gemini-eval-run"
)
- If a
prompt_template
is specified, theprompt
column is not required. Prompts can be assembled from the evaluation dataset, and all prompt template variable names must be present in the dataset columns.
import pandas as pd
from vertexai.evaluation import EvalTask, MetricPromptTemplateExamples
from vertexai.generative_models import GenerativeModel
eval_dataset = pd.DataFrame({
"context" : [...],
"instruction": [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[MetricPromptTemplateExamples.Pointwise.SUMMARIZATION_QUALITY],
).evaluate(
model=GenerativeModel("gemini-1.5-pro"),
prompt_template="{instruction}. Article: {context}. Summary:",
)
- To perform evaluation with custom model inference, specify the
model
parameter with a custom inference function. The input column name to the custom inference function isprompt
and must be present in the dataset.
from openai import OpenAI
from vertexai.evaluation import EvalTask, MetricPromptTemplateExamples
client = OpenAI()
def custom_model_fn(input: str) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": input}
]
)
return response.choices[0].message.content
eval_dataset = pd.DataFrame({
"prompt" : [...],
"reference": [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[MetricPromptTemplateExamples.Pointwise.SAFETY],
experiment="my-experiment",
).evaluate(
model=custom_model_fn,
experiment_run_name="gpt-eval-run"
)
- To perform pairwise metric evaluation with model inference step, specify
the
baseline_model
input to aPairwiseMetric
instance and the candidatemodel
input to theEvalTask.evaluate()
function. The input column name to both models isprompt
and must be present in the dataset.
import pandas as pd
from vertexai.evaluation import EvalTask, MetricPromptTemplateExamples, PairwiseMetric
from vertexai.generative_models import GenerativeModel
baseline_model = GenerativeModel("gemini-1.0-pro")
candidate_model = GenerativeModel("gemini-1.5-pro")
pairwise_groundedness = PairwiseMetric(
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template(
"pairwise_groundedness"
),
baseline_model=baseline_model,
)
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[pairwise_groundedness],
experiment="my-pairwise-experiment",
).evaluate(
model=candidate_model,
experiment_run_name="gemini-pairwise-eval-run",
)
Documentation
You can find complete documentation for the Vertex AI SDKs and the Gemini model in the Google Cloud documentation
Contributing
See Contributing for more information on contributing to the Vertex AI Python SDK.
License
The contents of this repository are licensed under the Apache License, version 2.0.