Corsi per lavorare con i modelli di visione artificiale.
Corsi
GeneratedImage
GeneratedImage(
image_bytes: typing.Optional[bytes],
generation_parameters: typing.Dict[str, typing.Any],
gcs_uri: typing.Optional[str] = None,
)
Immagine generata.
Image
Image(
image_bytes: typing.Optional[bytes] = None, gcs_uri: typing.Optional[str] = None
)
Immagine.
ImageCaptioningModel
ImageCaptioningModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Genera didascalie dall'immagine.
Esempi:
model = ImageCaptioningModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
captions = model.get_captions(
image=image,
# Optional:
number_of_results=1,
language="en",
)
ImageGenerationModel
ImageGenerationModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Genera immagini dal prompt di testo.
Esempi:
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
# Optional:
number_of_images=1,
seed=0,
)
response[0].show()
response[0].save("image1.png")
ImageGenerationResponse
ImageGenerationResponse(images: typing.List[GeneratedImage])
Risposta di generazione di immagini.
ImageQnAModel
ImageQnAModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Consente di rispondere a domande su un'immagine.
Esempi:
model = ImageQnAModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
answers = model.ask_question(
image=image,
question="What color is the car in this image?",
# Optional:
number_of_results=1,
)
ImageTextModel
ImageTextModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Genera testo dalle immagini.
Esempi:
model = ImageTextModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
captions = model.get_captions(
image=image,
# Optional:
number_of_results=1,
language="en",
)
answers = model.ask_question(
image=image,
question="What color is the car in this image?",
# Optional:
number_of_results=1,
)
MultiModalEmbeddingModel
MultiModalEmbeddingModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Genera vettori di incorporamento da immagini e video.
Esempi:
model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file("image.png")
video = Video.load_from_file("video.mp4")
embeddings = model.get_embeddings(
image=image,
video=video,
contextual_text="Hello world",
)
image_embedding = embeddings.image_embedding
video_embeddings = embeddings.video_embeddings
text_embedding = embeddings.text_embedding
MultiModalEmbeddingResponse
MultiModalEmbeddingResponse(
_prediction_response: typing.Any,
image_embedding: typing.Optional[typing.List[float]] = None,
video_embeddings: typing.Optional[
typing.List[vertexai.vision_models.VideoEmbedding]
] = None,
text_embedding: typing.Optional[typing.List[float]] = None,
)
La risposta di incorporamento multimodale.
Video
Video(
video_bytes: typing.Optional[bytes] = None, gcs_uri: typing.Optional[str] = None
)
Video.
VideoEmbedding
VideoEmbedding(
start_offset_sec: int, end_offset_sec: int, embedding: typing.List[float]
)
Incorporamenti generati dal video con tempi di offset.
VideoSegmentConfig
VideoSegmentConfig(
start_offset_sec: int = 0, end_offset_sec: int = 120, interval_sec: int = 16
)
I segmenti video specifici (in secondi) per i quali vengono generati gli incorporamenti.
WatermarkVerificationModel
WatermarkVerificationModel(
model_id: str, endpoint_name: typing.Optional[str] = None
)
Verifica se un'immagine ha una filigrana
WatermarkVerificationResponse
WatermarkVerificationResponse(
_prediction_response: Any, watermark_verification_result: Optional[str] = None
)
WatermarkVerificationResponse(_prediction_response: Any, watermark_verification_result: Optional[str] = None)