SDK Vertex AI Node.js

L'SDK Vertex AI Node.js consente agli sviluppatori di utilizzare i modelli di IA generativa all'avanguardia di Google (come Gemini) per creare funzionalità e applicazioni basate sull'IA.

Visita questa pagina per esempi dettagliati utilizzando l'SDK Vertex AI Node.js.

Prima di iniziare

  1. Seleziona o crea un progetto della piattaforma Cloud.
  2. Abilita la fatturazione per il progetto.
  3. Abilita l'API Vertex AI.
  4. Configura l'autenticazione con un account di servizio in modo da poter accedere all'API dalla workstation locale.

Installazione

Installa questo SDK tramite Gestione dei partner di rete.

npm install @google-cloud/vertexai

Imposta

Per utilizzare l'SDK, crea un'istanza di VertexAI trasmettendo l'ID progetto e la località Google Cloud. Quindi crea un riferimento a un modello generativo.

const {VertexAI, HarmCategory, HarmBlockThreshold} = require('@google-cloud/vertexai');

const project = 'your-cloud-project';
const location = 'us-central1';

const vertex_ai = new VertexAI({project: project, location: location});

// Instantiate models
const generativeModel = vertex_ai.preview.getGenerativeModel({
    model: 'gemini-pro',
    // The following parameters are optional
    // They can also be passed to individual content generation requests
    safety_settings: [{category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE}],
    generation_config: {max_output_tokens: 256},
  });

const generativeVisionModel = vertex_ai.preview.getGenerativeModel({
    model: 'gemini-pro-vision',
});

Generazione di contenuti in streaming

async function streamGenerateContent() {
  const request = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };
  const streamingResp = await generativeModel.generateContentStream(request);
  for await (const item of streamingResp.stream) {
    console.log('stream chunk: ', JSON.stringify(item));
  }
  console.log('aggregated response: ', JSON.stringify(await streamingResp.response));
};

streamGenerateContent();

Chat in streaming

async function streamChat() {
  const chat = generativeModel.startChat();
  const chatInput1 = "How can I learn more about Node.js?";
  const result1 = await chat.sendMessageStream(chatInput1);
  for await (const item of result1.stream) {
      console.log(item.candidates[0].content.parts[0].text);
  }
  console.log('aggregated response: ', JSON.stringify(await result1.response));
}

streamChat();

Generazione di contenuti in più parti

Fornitura di un URI immagine Google Cloud Storage

async function multiPartContent() {
    const filePart = {file_data: {file_uri: "gs://generativeai-downloads/images/scones.jpg", mime_type: "image/jpeg"}};
    const textPart = {text: 'What is this a picture of?'};
    const request = {
        contents: [{role: 'user', parts: [textPart, filePart]}],
      };
    const streamingResp = await generativeVisionModel.generateContentStream(request);
    for await (const item of streamingResp.stream) {
      console.log('stream chunk: ', JSON.stringify(item));
    }
    const aggregatedResponse = await streamingResp.response;
    console.log(aggregatedResponse.candidates[0].content);
}

multiPartContent();

Fornitura di una stringa immagine Base64

async function multiPartContentImageString() {
    // Replace this with your own base64 image string
    const base64Image = 'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==';
    const filePart = {inline_data: {data: base64Image, mime_type: 'image/jpeg'}};
    const textPart = {text: 'What is this a picture of?'};
    const request = {
        contents: [{role: 'user', parts: [textPart, filePart]}],
      };
    const resp = await generativeVisionModel.generateContentStream(request);
    const contentResponse = await resp.response;
    console.log(contentResponse.candidates[0].content.parts[0].text);
}

multiPartContentImageString();

Contenuti in più parti con testo e video

async function multiPartContentVideo() {
    const filePart = {file_data: {file_uri: 'gs://cloud-samples-data/video/animals.mp4', mime_type: 'video/mp4'}};
    const textPart = {text: 'What is in the video?'};
    const request = {
        contents: [{role: 'user', parts: [textPart, filePart]}],
      };
    const streamingResp = await generativeVisionModel.generateContentStream(request);
    for await (const item of streamingResp.stream) {
      console.log('stream chunk: ', JSON.stringify(item));
    }
    const aggregatedResponse = await streamingResp.response;
    console.log(aggregatedResponse.candidates[0].content);
}

multiPartContentVideo();

Generazione di contenuti: non in streaming

async function generateContent() {
  const request = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };
  const resp = await generativeModel.generateContent(request);

  console.log('aggregated response: ', JSON.stringify(await resp.response));
};

generateContent();

Conteggio dei token

async function countTokens() {
    const request = {
        contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
      };
    const resp = await generativeModel.countTokens(request);
    console.log('count tokens response: ', resp);
}

countTokens();

Licenza

I contenuti di questo repository sono concessi in licenza in base alla licenza Apache, versione 2.0.