函式呼叫參照

本指南提供使用 Gemini API 函式呼叫的參考資料。涵蓋下列主題:

  • 支援的型號列出支援函式呼叫的型號。
  • 語法範例顯示函式呼叫 API 要求的基本結構。
  • API 參數詳細說明函式呼叫中使用的參數,例如 FunctionDeclarationFunctionCallingConfig
  • 範例提供程式碼範例,說明如何傳送函式宣告及設定函式呼叫行為。

函式呼叫功能可提升大型語言模型提供相關且符合情境答案的能力。

透過 Function Calling API,您可以為生成式 AI 模型提供自訂函式。模型不會直接叫用這些函式,而是產生結構化資料輸出內容,指定函式名稱和建議的引數。您可透過這項輸出內容呼叫外部 API 或資訊系統,例如資料庫、客戶關係管理 (CRM) 系統和文件存放區。接著,您可以將 API 輸出內容傳回模型,提升模型的回覆品質。

如要瞭解函式呼叫的概念總覽,請參閱函式呼叫

支援的模型

限制

  • 每個要求最多可提供 128 個函式宣告。

語法範例

以下範例顯示函式呼叫 API 要求的語法。

curl

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \

https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
-d '{
  "contents": [{
    ...
  }],
  "tools": [{
    "function_declarations": [
      {
        ...
      }
    ]
  }]
}'

API 參數

本節說明函式呼叫的參數。如要瞭解實作方式,請參閱「範例」一節。

FunctionDeclaration

FunctionDeclaration 定義模型可根據 OpenAPI 3.0 規格產生 JSON 輸入內容的函式。

參數

name

string

要呼叫的函式名稱。名稱開頭須為英文字母或底線。可包含字母 (a-z、A-Z)、數字 (0-9)、底線、點或破折號,長度上限為 64 個字元。

description

自由參加:string

函式用途的說明。模型會根據這項說明,判斷如何呼叫函式,以及是否要呼叫函式。為獲得最佳結果,建議您提供說明。

parameters

自由參加:Schema

函式的參數,以 OpenAPI JSON 結構定義物件格式說明。

response

自由參加:Schema

函式的輸出內容,以 OpenAPI JSON 結構定義物件格式說明。

詳情請參閱「函式呼叫」。

Schema

Schema 會根據 OpenAPI 3.0 結構定義規格,定義函式呼叫中輸入和輸出資料的格式。

參數
類型

string

資料類型。必須是下列其中一個項目:

  • STRING
  • INTEGER
  • BOOLEAN
  • NUMBER
  • ARRAY
  • OBJECT
description

自由參加:string

資料說明。

enum

自由參加:string[]

原始型別元素可能的值。

items

自由參加:Schema[]

ARRAY 類型元素的結構定義。

properties

自由參加:Schema

OBJECT 類型屬性的結構定義。

required

自由參加:string[]

OBJECT 類型的必要屬性。

nullable

自由參加:bool

指出值是否可為 null

FunctionCallingConfig

FunctionCallingConfig 可讓你控管模型的行為,並決定要呼叫的函式。

參數

mode

自由參加:enum/string[]

  • AUTO:這是預設行為。模型會根據情境判斷是否要呼叫函式,或以自然語言回覆。
  • NONE:模型不會呼叫任何函式。
  • ANY:模型一律會預測函式呼叫。如未提供 allowed_function_names,模型會從所有可用的函式宣告中選擇。如果您提供 allowed_function_names,模型會從該組函式中選擇。

allowed_function_names

自由參加:string[]

要呼叫的函式名稱清單。只有在 modeANY 時,才能設定這項功能。函式名稱必須符合 FunctionDeclaration.name。如果模式為 ANY,模型會從您提供的函式名稱清單中預測函式呼叫。

functionCall

functionCall 是模型傳回的預測結果。其中包含要呼叫的函式名稱 (functionDeclaration.name),以及含有參數及其值的結構化 JSON 物件。

參數

name

string

要呼叫的函式名稱。

args

Struct

JSON 物件格式的函式參數及其值。

如需參數詳細資料,請參閱「函式呼叫」。

functionResponse

functionResponseFunctionCall 的輸出內容。其中包含呼叫的函式名稱,以及含有函式輸出內容的結構化 JSON 物件。您將這項回覆提供給模型,做為背景資訊。

參數

name

string

呼叫的函式名稱。

response

Struct

函式的回應 (JSON 物件格式)。

範例

傳送函式宣告

以下範例說明如何將查詢和函式宣告傳送至模型。

REST

使用任何要求資料之前,請先替換以下項目:

  • PROJECT_ID:您的專案 ID
  • MODEL_ID:正在處理的模型 ID。
  • ROLE:建立訊息的實體身分
  • TEXT:要傳送給模型的提示。
  • NAME:要呼叫的函式名稱。
  • DESCRIPTION:函式的說明和用途。
  • 如需其他欄位,請參閱「參數清單」表格。

HTTP 方法和網址:

POST https://aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/global/publishers/google/models/MODEL_ID:generateContent

JSON 要求主體:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }],
  "tools": [{
    "function_declarations": [
      {
        "name": "NAME",
        "description": "DESCRIPTION",
        "parameters": {
          "type": "TYPE",
          "properties": {
            "location": {
              "type": "TYPE",
              "description": "DESCRIPTION"
            }
          },
          "required": [
            "location"
          ]
        }
      }
    ]
  }]
}

如要傳送要求,請選擇以下其中一個選項:

curl

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/global/publishers/google/models/MODEL_ID:generateContent"

PowerShell

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/global/publishers/google/models/MODEL_ID:generateContent" | Select-Object -Expand Content

cURL 指令範例

PROJECT_ID=myproject
LOCATION=us-central1
MODEL_ID=gemini-2.5-flash

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [{
        "text": "What is the weather in Boston?"
      }]
    }],
    "tools": [{
      "functionDeclarations": [
        {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
              }
            },
            "required": [
              "location"
            ]
          }
        }
      ]
    }]
  }'

Python 適用的 Gen AI SDK

from google import genai
from google.genai.types import GenerateContentConfig, HttpOptions

def get_current_weather(location: str) -> str:
    """Example method. Returns the current weather.

    Args:
        location: The city and state, e.g. San Francisco, CA
    """
    weather_map: dict[str, str] = {
        "Boston, MA": "snowing",
        "San Francisco, CA": "foggy",
        "Seattle, WA": "raining",
        "Austin, TX": "hot",
        "Chicago, IL": "windy",
    }
    return weather_map.get(location, "unknown")

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents="What is the weather like in Boston?",
    config=GenerateContentConfig(
        tools=[get_current_weather],
        temperature=0,
    ),
)

print(response.text)
# Example response:
# The weather in Boston is sunny.

Node.js

const {
  VertexAI,
  FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');

const functionDeclarations = [
  {
    function_declarations: [
      {
        name: 'get_current_weather',
        description: 'get weather in a given location',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            location: {type: FunctionDeclarationSchemaType.STRING},
            unit: {
              type: FunctionDeclarationSchemaType.STRING,
              enum: ['celsius', 'fahrenheit'],
            },
          },
          required: ['location'],
        },
      },
    ],
  },
];

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function functionCallingBasic(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.preview.getGenerativeModel({
    model: model,
  });

  const request = {
    contents: [
      {role: 'user', parts: [{text: 'What is the weather in Boston?'}]},
    ],
    tools: functionDeclarations,
  };
  const result = await generativeModel.generateContent(request);
  console.log(JSON.stringify(result.response.candidates[0].content));
}

Java

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.FunctionDeclaration;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Tool;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.ChatSession;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;

public class FunctionCalling {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-2.0-flash-001";

    String promptText = "What's the weather like in Paris?";

    whatsTheWeatherLike(projectId, location, modelName, promptText);
  }

  // A request involving the interaction with an external tool
  public static String whatsTheWeatherLike(String projectId, String location,
                                           String modelName, String promptText)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {

      FunctionDeclaration functionDeclaration = FunctionDeclaration.newBuilder()
          .setName("getCurrentWeather")
          .setDescription("Get the current weather in a given location")
          .setParameters(
              Schema.newBuilder()
                  .setType(Type.OBJECT)
                  .putProperties("location", Schema.newBuilder()
                      .setType(Type.STRING)
                      .setDescription("location")
                      .build()
                  )
                  .addRequired("location")
                  .build()
          )
          .build();

      System.out.println("Function declaration:");
      System.out.println(functionDeclaration);

      // Add the function to a "tool"
      Tool tool = Tool.newBuilder()
          .addFunctionDeclarations(functionDeclaration)
          .build();

      // Start a chat session from a model, with the use of the declared function.
      GenerativeModel model = new GenerativeModel(modelName, vertexAI)
          .withTools(Arrays.asList(tool));
      ChatSession chat = model.startChat();

      System.out.println(String.format("Ask the question: %s", promptText));
      GenerateContentResponse response = chat.sendMessage(promptText);

      // The model will most likely return a function call to the declared
      // function `getCurrentWeather` with "Paris" as the value for the
      // argument `location`.
      System.out.println("\nPrint response: ");
      System.out.println(ResponseHandler.getContent(response));

      // Provide an answer to the model so that it knows what the result
      // of a "function call" is.
      Content content =
          ContentMaker.fromMultiModalData(
              PartMaker.fromFunctionResponse(
                  "getCurrentWeather",
                  Collections.singletonMap("currentWeather", "sunny")));
      System.out.println("Provide the function response: ");
      System.out.println(content);
      response = chat.sendMessage(content);

      // See what the model replies now
      System.out.println("Print response: ");
      String finalAnswer = ResponseHandler.getText(response);
      System.out.println(finalAnswer);

      return finalAnswer;
    }
  }
}

Go

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithFuncCall shows how to submit a prompt and a function declaration to the model,
// allowing it to suggest a call to the function to fetch external data. Returning this data
// enables the model to generate a text response that incorporates the data.
func generateWithFuncCall(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	weatherFunc := &genai.FunctionDeclaration{
		Description: "Returns the current weather in a location.",
		Name:        "getCurrentWeather",
		Parameters: &genai.Schema{
			Type: "object",
			Properties: map[string]*genai.Schema{
				"location": {Type: "string"},
			},
			Required: []string{"location"},
		},
	}
	config := &genai.GenerateContentConfig{
		Tools: []*genai.Tool{
			{FunctionDeclarations: []*genai.FunctionDeclaration{weatherFunc}},
		},
		Temperature: genai.Ptr(float32(0.0)),
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What is the weather like in Boston?"},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	var funcCall *genai.FunctionCall
	for _, p := range resp.Candidates[0].Content.Parts {
		if p.FunctionCall != nil {
			funcCall = p.FunctionCall
			fmt.Fprint(w, "The model suggests to call the function ")
			fmt.Fprintf(w, "%q with args: %v\n", funcCall.Name, funcCall.Args)
			// Example response:
			// The model suggests to call the function "getCurrentWeather" with args: map[location:Boston]
		}
	}
	if funcCall == nil {
		return fmt.Errorf("model did not suggest a function call")
	}

	// Use synthetic data to simulate a response from the external API.
	// In a real application, this would come from an actual weather API.
	funcResp := &genai.FunctionResponse{
		Name: "getCurrentWeather",
		Response: map[string]any{
			"location":         "Boston",
			"temperature":      "38",
			"temperature_unit": "F",
			"description":      "Cold and cloudy",
			"humidity":         "65",
			"wind":             `{"speed": "10", "direction": "NW"}`,
		},
	}

	// Return conversation turns and API response to complete the model's response.
	contents = []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What is the weather like in Boston?"},
		},
			Role: "user"},
		{Parts: []*genai.Part{
			{FunctionCall: funcCall},
		}},
		{Parts: []*genai.Part{
			{FunctionResponse: funcResp},
		}},
	}

	resp, err = client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// The weather in Boston is cold and cloudy with a temperature of 38 degrees Fahrenheit. The humidity is ...

	return nil
}

REST (OpenAI)

您可以使用 OpenAI 程式庫呼叫 Function Calling API。詳情請參閱「 使用 OpenAI 程式庫呼叫 Vertex AI 模型」。

使用任何要求資料之前,請先替換以下項目:

  • PROJECT_ID:。
  • MODEL_ID:正在處理的模型 ID。

HTTP 方法和網址:

POST https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions

JSON 要求主體:

{
  "model": "google/MODEL_ID",
  "messages": [
    {
      "role": "user",
      "content": "What is the weather in Boston?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "OBJECT",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
            }
           },
          "required": ["location"]
        }
      }
    }
  ]
}

如要傳送要求,請選擇以下其中一個選項:

curl

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions"

PowerShell

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions" | Select-Object -Expand Content

Python (OpenAI)

您可以使用 OpenAI 程式庫呼叫 Function Calling API。詳情請參閱「 使用 OpenAI 程式庫呼叫 Vertex AI 模型」。

import vertexai
import openai

from google.auth import default, transport

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"
location = "us-central1"

vertexai.init(project=PROJECT_ID, location=location)

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_request = transport.requests.Request()
credentials.refresh(auth_request)

# # OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",
                    },
                },
                "required": ["location"],
            },
        },
    }
]

messages = []
messages.append(
    {
        "role": "system",
        "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
    }
)
messages.append({"role": "user", "content": "What is the weather in Boston?"})

response = client.chat.completions.create(
    model="google/gemini-2.0-flash-001",
    messages=messages,
    tools=tools,
)

print("Function:", response.choices[0].message.tool_calls[0].id)
print("Arguments:", response.choices[0].message.tool_calls[0].function.arguments)
# Example response:
# Function: get_current_weather
# Arguments: {"location":"Boston"}

設定函式呼叫行為

以下範例說明如何將 FunctionCallingConfig 傳遞至模型。

您可以使用 functionCallingConfig,要求模型輸出特定函式呼叫。如要設定這項行為,請按照下列步驟操作:

  • 將函式呼叫 mode 設為 ANY
  • allowed_function_names 中指定要使用的函式名稱。 如果 allowed_function_names 為空,可以傳回任何提供的函式。

REST

PROJECT_ID=myproject
LOCATION=us-central1
MODEL_ID=gemini-2.5-flash

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [{
        "text": "Do you have the White Pixel 8 Pro 128GB in stock in the US?"
      }]
    }],
    "tools": [{
      "functionDeclarations": [
        {
          "name": "get_product_sku",
          "description": "Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
          "parameters": {
            "type": "object",
            "properties": {
              "product_name": {"type": "string", "description": "Product name"}
            }
          }
        },
        {
          "name": "get_store_location",
          "description": "Get the location of the closest store",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {"type": "string", "description": "Location"}
            },
          }
        }
      ]
    }],
    "toolConfig": {
        "functionCallingConfig": {
            "mode":"ANY",
            "allowedFunctionNames": ["get_product_sku"]
      }
    },
    "generationConfig": {
      "temperature": 0.95,
      "topP": 1.0,
      "maxOutputTokens": 8192
    }
  }'

Python 適用的 Gen AI SDK

from google import genai
from google.genai.types import (
    FunctionDeclaration,
    GenerateContentConfig,
    HttpOptions,
    Tool,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

get_album_sales = FunctionDeclaration(
    name="get_album_sales",
    description="Gets the number of albums sold",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "OBJECT",
        "properties": {
            "albums": {
                "type": "ARRAY",
                "description": "List of albums",
                "items": {
                    "description": "Album and its sales",
                    "type": "OBJECT",
                    "properties": {
                        "album_name": {
                            "type": "STRING",
                            "description": "Name of the music album",
                        },
                        "copies_sold": {
                            "type": "INTEGER",
                            "description": "Number of copies sold",
                        },
                    },
                },
            },
        },
    },
)

sales_tool = Tool(
    function_declarations=[get_album_sales],
)

response = client.models.generate_content(
    model=model_id,
    contents='At Stellar Sounds, a music label, 2024 was a rollercoaster. "Echoes of the Night," a debut synth-pop album, '
    'surprisingly sold 350,000 copies, while veteran rock band "Crimson Tide\'s" latest, "Reckless Hearts," '
    'lagged at 120,000. Their up-and-coming indie artist, "Luna Bloom\'s" EP, "Whispers of Dawn," '
    'secured 75,000 sales. The biggest disappointment was the highly-anticipated rap album "Street Symphony" '
    "only reaching 100,000 units. Overall, Stellar Sounds moved over 645,000 units this year, revealing unexpected "
    "trends in music consumption.",
    config=GenerateContentConfig(
        tools=[sales_tool],
        temperature=0,
    ),
)

print(response.function_calls)
# Example response:
# [FunctionCall(
#     id=None,
#     name="get_album_sales",
#     args={
#         "albums": [
#             {"album_name": "Echoes of the Night", "copies_sold": 350000},
#             {"copies_sold": 120000, "album_name": "Reckless Hearts"},
#             {"copies_sold": 75000, "album_name": "Whispers of Dawn"},
#             {"copies_sold": 100000, "album_name": "Street Symphony"},
#         ]
#     },
# )]

Node.js

const {
  VertexAI,
  FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');

const functionDeclarations = [
  {
    function_declarations: [
      {
        name: 'get_product_sku',
        description:
          'Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            productName: {type: FunctionDeclarationSchemaType.STRING},
          },
        },
      },
      {
        name: 'get_store_location',
        description: 'Get the location of the closest store',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            location: {type: FunctionDeclarationSchemaType.STRING},
          },
        },
      },
    ],
  },
];

const toolConfig = {
  function_calling_config: {
    mode: 'ANY',
    allowed_function_names: ['get_product_sku'],
  },
};

const generationConfig = {
  temperature: 0.95,
  topP: 1.0,
  maxOutputTokens: 8192,
};

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function functionCallingAdvanced(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.preview.getGenerativeModel({
    model: model,
  });

  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {text: 'Do you have the White Pixel 8 Pro 128GB in stock in the US?'},
        ],
      },
    ],
    tools: functionDeclarations,
    tool_config: toolConfig,
    generation_config: generationConfig,
  };
  const result = await generativeModel.generateContent(request);
  console.log(JSON.stringify(result.response.candidates[0].content));
}

Go

import (
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// functionCallsChat opens a chat session and sends 4 messages to the model:
// - convert a first text question into a structured function call request
// - convert the first structured function call response into natural language
// - convert a second text question into a structured function call request
// - convert the second structured function call response into natural language
func functionCallsChat(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-2.0-flash-001"
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Build an OpenAPI schema, in memory
	paramsProduct := &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"productName": {
				Type:        genai.TypeString,
				Description: "Product name",
			},
		},
	}
	fundeclProductInfo := &genai.FunctionDeclaration{
		Name:        "getProductSku",
		Description: "Get the SKU for a product",
		Parameters:  paramsProduct,
	}
	paramsStore := &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"location": {
				Type:        genai.TypeString,
				Description: "Location",
			},
		},
	}
	fundeclStoreLocation := &genai.FunctionDeclaration{
		Name:        "getStoreLocation",
		Description: "Get the location of the closest store",
		Parameters:  paramsStore,
	}
	model.Tools = []*genai.Tool{
		{FunctionDeclarations: []*genai.FunctionDeclaration{
			fundeclProductInfo,
			fundeclStoreLocation,
		}},
	}
	model.SetTemperature(0.0)

	chat := model.StartChat()

	// Send a prompt for the first conversation turn that should invoke the getProductSku function
	prompt := "Do you have the Pixel 8 Pro in stock?"
	fmt.Fprintf(w, "Question: %s\n", prompt)
	resp, err := chat.SendMessage(ctx, genai.Text(prompt))
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has returned a function call to the declared function `getProductSku`
	// with a value for the argument `productName`.
	jsondata, err := json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call generated by the model:\n\t%s\n", string(jsondata))

	// Create a function call response, to simulate the result of a call to a
	// real service
	funresp := &genai.FunctionResponse{
		Name: "getProductSku",
		Response: map[string]any{
			"sku":      "GA04834-US",
			"in_stock": "yes",
		},
	}
	jsondata, err = json.MarshalIndent(funresp, "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call response sent to the model:\n\t%s\n\n", string(jsondata))

	// And provide the function call response to the model
	resp, err = chat.SendMessage(ctx, funresp)
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has taken the function call response as input, and has
	// reformulated the response to the user.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "Answer generated by the model:\n\t%s\n\n", string(jsondata))

	// Send a prompt for the second conversation turn that should invoke the getStoreLocation function
	prompt2 := "Is there a store in Mountain View, CA that I can visit to try it out?"
	fmt.Fprintf(w, "Question: %s\n", prompt)

	resp, err = chat.SendMessage(ctx, genai.Text(prompt2))
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has returned a function call to the declared function `getStoreLocation`
	// with a value for the argument `store`.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call generated by the model:\n\t%s\n", string(jsondata))

	// Create a function call response, to simulate the result of a call to a
	// real service
	funresp = &genai.FunctionResponse{
		Name: "getStoreLocation",
		Response: map[string]any{
			"store": "2000 N Shoreline Blvd, Mountain View, CA 94043, US",
		},
	}
	jsondata, err = json.MarshalIndent(funresp, "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call response sent to the model:\n\t%s\n\n", string(jsondata))

	// And provide the function call response to the model
	resp, err = chat.SendMessage(ctx, funresp)
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has taken the function call response as input, and has
	// reformulated the response to the user.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "Answer generated by the model:\n\t%s\n\n", string(jsondata))
	return nil
}

REST (OpenAI)

您可以使用 OpenAI 程式庫呼叫 Function Calling API。詳情請參閱「 使用 OpenAI 程式庫呼叫 Vertex AI 模型」。

使用任何要求資料之前,請先替換以下項目:

  • PROJECT_ID:。
  • MODEL_ID:正在處理的模型 ID。

HTTP 方法和網址:

POST https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions

JSON 要求主體:

{
  "model": "google/MODEL_ID",
  "messages": [
  {
    "role": "user",
    "content": "What is the weather in Boston?"
  }
],
"tools": [
  {
    "type": "function",
    "function": {
      "name": "get_current_weather",
      "description": "Get the current weather in a given location",
      "parameters": {
        "type": "OBJECT",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
          }
         },
        "required": ["location"]
      }
    }
  }
],
"tool_choice": "auto"
}

如要傳送要求,請選擇以下其中一個選項:

curl

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions"

PowerShell

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions" | Select-Object -Expand Content

Python (OpenAI)

您可以使用 OpenAI 程式庫呼叫 Function Calling API。詳情請參閱「 使用 OpenAI 程式庫呼叫 Vertex AI 模型」。

import vertexai
import openai

from google.auth import default, transport

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"
location = "us-central1"

vertexai.init(project=PROJECT_ID, location=location)

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_request = transport.requests.Request()
credentials.refresh(auth_request)

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",
                    },
                },
                "required": ["location"],
            },
        },
    }
]

messages = []
messages.append(
    {
        "role": "system",
        "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
    }
)
messages.append({"role": "user", "content": "What is the weather in Boston, MA?"})

response = client.chat.completions.create(
    model="google/gemini-2.0-flash-001",
    messages=messages,
    tools=tools,
    tool_choice="auto",
)

print("Function:", response.choices[0].message.tool_calls[0].id)
print("Arguments:", response.choices[0].message.tool_calls[0].function.arguments)
# Example response:
# Function: get_current_weather
# Arguments: {"location":"Boston"}

後續步驟

詳情請參閱下列說明文件: