Testare i prompt di chat del codice

Per progettare un prompt efficace, prova diverse versioni e sperimenta i parametri per determinare quale genera la risposta ottimale. Puoi testare i prompt in modo programmatico con le API Codey e nella console Google Cloud con Vertex AI Studio.

Testare i prompt di chat

Per testare i prompt di chat con codice, scegli uno dei seguenti metodi.

REST

Per testare un prompt di chat con codice utilizzando l'API Vertex AI, invia una richiesta POST all'endpoint del modello del publisher.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • PROJECT_ID: il tuo ID progetto.
  • Messaggi: la cronologia delle conversazioni fornita al modello in un formato strutturato con autore alternativo. I messaggi vengono visualizzati in ordine cronologico: prima i più vecchi, poi i più recenti. Quando la cronologia dei messaggi fa sì che l'input superi la lunghezza massima, i messaggi meno recenti vengono rimossi finché l'intero prompt non rientra nel limite consentito. Affinché il modello generi una risposta, deve esserci un numero dispari di messaggi (coppie AUTORE-CONtenuto).
    • AUTHOR: l'autore del messaggio.
    • CONTENT: i contenuti del messaggio.
  • TEMPERATURE: La temperatura viene utilizzata per il campionamento durante la generazione della risposta. La temperatura controlla il grado di randomicità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono risposte meno creative o aperte, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Con una temperatura pari a 0, vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è ancora possibile una piccola variazione.
  • MAX_OUTPUT_TOKENS: numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

    Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.

  • CANDIDATE_COUNT: Il numero di varianti di risposta da restituire. Per ogni richiesta, ti vengono addebitati i token di output di tutti i candidati, ma solo una volta per i token di input.

    La specifica di più candidati è una funzionalità di anteprima che funziona con generateContent (streamGenerateContent non è supportato). Sono supportati i seguenti modelli:

    • Gemini 1.5 Flash: 1-8, valore predefinito: 1
    • Gemini 1.5 Pro: 1-8, valore predefinito: 1
    • Gemini 1.0 Pro: 1-8, valore predefinito: 1
    L'int deve essere compreso tra 1 e 4.

Metodo HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/codechat-bison:predict

Corpo JSON della richiesta:

{
  "instances": [
    { "messages": [
      {
         "author": "AUTHOR",
         "content": "CONTENT"
      }
  ],
  "parameters": {
    "temperature": TEMPERATURE,
    "maxOutputTokens": MAX_OUTPUT_TOKENS,
    "candidateCount": CANDIDATE_COUNT
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/codechat-bison:predict"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/codechat-bison:predict" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.

from vertexai.language_models import CodeChatModel

# TODO developer - override these parameters as needed:
parameters = {
    "temperature": 0.5,  # Temperature controls the degree of randomness in token selection.
    "max_output_tokens": 1024,  # Token limit determines the maximum amount of text output.
}

code_chat_model = CodeChatModel.from_pretrained("codechat-bison@001")
chat_session = code_chat_model.start_chat()

response = chat_session.send_message(
    "Please help write a function to calculate the min of two numbers", **parameters
)
print(f"Response from Model: {response.text}")
# Response from Model: Sure, here is a function that you can use to calculate the minimum of two numbers:
# ```
# def min(a, b):
#   """
#   Calculates the minimum of two numbers.
#   Args:
#     a: The first number.
# ...

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'codechat-bison@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  // Learn more about creating prompts to work with a code chat model at:
  // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-chat-prompts
  const prompt = {
    messages: [
      {
        author: 'user',
        content: 'Hi, how are you?',
      },
      {
        author: 'system',
        content: 'I am doing good. What can I help you in the coding world?',
      },
      {
        author: 'user',
        content:
          'Please help write a function to calculate the min of two numbers',
      },
    ],
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.5,
    maxOutputTokens: 1024,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get code chat response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

callPredict();

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictCodeChatSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";

    // Learn more about creating prompts to work with a code chat model at:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-chat-prompts
    String instance =
        "{ \"messages\": [\n"
            + "{\n"
            + "  \"author\": \"user\",\n"
            + "  \"content\": \"Hi, how are you?\"\n"
            + "},\n"
            + "{\n"
            + "  \"author\": \"system\",\n"
            + "  \"content\": \"I am doing good. What can I help you in the coding world?\"\n"
            + " },\n"
            + "{\n"
            + "  \"author\": \"user\",\n"
            + "  \"content\":\n"
            + "     \"Please help write a function to calculate the min of two numbers.\"\n"
            + "}\n"
            + "]}";
    String parameters = "{\n" + "  \"temperature\": 0.5,\n" + "  \"maxOutputTokens\": 1024\n" + "}";
    String location = "us-central1";
    String publisher = "google";
    String model = "codechat-bison@001";

    predictCodeChat(instance, parameters, project, location, publisher, model);
  }

  // Use a code chat model to generate a code function
  public static void predictCodeChat(
      String instance,
      String parameters,
      String project,
      String location,
      String publisher,
      String model)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value instanceValue = stringToValue(instance);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue);

      Value parameterValue = stringToValue(parameters);

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
    }
  }

  // Convert a Json string to a protobuf.Value
  static Value stringToValue(String value) throws InvalidProtocolBufferException {
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(value, builder);
    return builder.build();
  }
}

Console

Per testare un prompt di chat di codice utilizzando Vertex AI Studio nella console Google Cloud, segui questi passaggi :

  1. Nella sezione Vertex AI della console Google Cloud, vai a Vertex AI Studio.

    Vai a Vertex AI Studio

  2. Fai clic su Inizia.
  3. Fai clic su Chat di codice.
  4. In Modello, seleziona il modello il cui nome inizia con codechat-bison. Un numero di tre cifre dopo codechat-bison indica il numero di versione del modello.
  5. Modifica Temperatura e Limite di token per sperimentare il loro impatto sulla risposta. Per ulteriori informazioni, consulta Parametri del modello di chat di codice.
  6. In Inserisci un prompt per iniziare una conversazione, inserisci un prompt per avviare una conversazione sul codice.
  7. Fai clic su Continua la conversazione per inviare il prompt alla chat.
  8. Dopo aver ricevuto una risposta, ripeti i due passaggi precedenti per continuare la conversazione.
  9. Fai clic su Salva se vuoi salvare un prompt.
  10. Fai clic su Visualizza codice per visualizzare il codice Python o un comando curl per il prompt.

Prompt di chat di esempio per il codice

MODEL_ID="codechat-bison"
PROJECT_ID=PROJECT_ID

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
$"{
'instances': [
    {
      'messages': [
        {
          'author': 'user',
          'content': 'Hi, how are you?',
        },
        {
          'author': 'system',
          'content': 'I am doing good. What Can I help you with in the coding world?',
        },
        {
          'author': 'user',
          'content': 'Please help write a function to calculate the min of two numbers',
        }
      ]
    }
  ],
  'parameters': {
    'temperature': 0.2,
    'maxOutputTokens': 1024,
    'candidateCount': 1
  }
}"

Per scoprire di più su come progettare i prompt di chat, consulta Prompt di chat.

Streaming della risposta dal modello di chat di codice

Per visualizzare richieste e risposte di codice campione che utilizzano l'API REST, consulta Esempi di utilizzo dell'API REST per lo streaming.

Per visualizzare richieste e risposte di codice campione che utilizzano l'SDK Vertex AI per Python, consulta Esempi di utilizzo dell'SDK Vertex AI per Python per lo streaming.

Passaggi successivi