AutoML Translation API tutorial

Stay organized with collections Save and categorize content based on your preferences.

This tutorial demonstrates how to create a custom translation model using AutoML Translation. The application trains a custom model using an English to Spanish dataset of technology-oriented sentence pairs from software localization.

The tutorial covers training the custom model, evaluating its performance, and translating new content.

Prerequisites

Configure your project environment

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Cloud project. Learn how to check if billing is enabled on a project.

  4. Enable the AutoML Translation APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Cloud project. Learn how to check if billing is enabled on a project.

  7. Enable the AutoML Translation APIs.

    Enable the APIs

  8. Install the Google Cloud CLI.
  9. Follow the instructions to create a service account and download a key file.
  10. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path to the service account key file that you downloaded when you created the service account. For example:
    export GOOGLE_APPLICATION_CREDENTIALS=key-file
  11. Add your new service account to the AutoML Editor IAM role with the following commands. Replace project-id with the name of your Google Cloud project and replace service-account-name with the name of your new service account, for example service-account1@myproject.iam.gserviceaccount.com.
    gcloud auth login
    gcloud config set project project-id
    gcloud projects add-iam-policy-binding project-id \
      --member=serviceAccount:service-account-name \
      --role='roles/automl.editor'
  12. Allow the AutoML Translation service accounts to access your Google Cloud project resources:
    gcloud projects add-iam-policy-binding project-id \
      --member="serviceAccount:service-project-number@gcp-sa-automl.iam.gserviceaccount.com" \
      --role="roles/automl.serviceAgent"
  13. Install the client library.
  14. Set the PROJECT_ID and REGION_NAME environment variables.

    Replace project-id with the Project ID of your Google Cloud project. AutoML Translation currently requires the location us-central1.
    export PROJECT_ID="project-id"
    export REGION_NAME="us-central1"
  15. Create a Google Cloud Storage bucket to store the documents that you will use to train your custom model.

    The bucket name must be in the format: $PROJECT_ID-vcm. The following command creates a storage bucket in the us-central1 region named $PROJECT_ID-vcm.
    gsutil mb -p $PROJECT_ID -c regional -l $REGION_NAME gs://$PROJECT_ID-vcm/
  16. Download the archive file containing the sample data for training the model, extract its contents, and upload the files to your Google Cloud Storage bucket.

    See Preparing your training data for details about the formats.

    The sample code in this tutorial uses the English to Spanish dataset. Datasets with target languages German, French, Russian, and Chinese are also available. If you use one of these alternate datasets, replace the language code es in the samples with the appropriate language code.

  17. In the en-es.csv file from the previous step, replace {project_id} with the Project ID for your project.

Source code file locations

You can download the source code from the location provided below. After downloading, you can copy the source code into your Google Cloud project folder.

Python

The tutorial consists of these Python files:

  • translate_create_dataset.py – Includes functionality to create a dataset
  • import_dataset.py – Includes functionality to import a dataset
  • translate_create_model.py – Includes functionality to create a model
  • list_model_evaluations.py – Includes functionality to list model evaluations
  • translate_predict.py – Includes functionality related to prediction
  • delete_model.py - Include functionality to delete a model

Java

The tutorial consists of these Java files:

  • TranslateCreateDataset.java – Includes functionality to create a dataset
  • ImportDataset.java – Includes functionality to import a dataset
  • TranslateCreateModel.java – Includes functionality to create a model
  • ListModelEvaluations.java – Includes functionality to list model evaluations
  • TranslatePredict.java – Includes functionality related to prediction
  • DeleteModel.java – Includes functionality to delete a model

Node.js

The tutorial consists of these Node.js programs:

  • translate_create_dataset.js – Includes functionality to create a dataset
  • import_dataset.js – Includes functionality to import a dataset
  • translate_create_model.js – Includes functionality to create a model
  • list_model_evaluations.js – Includes functionality to list model evaluations
  • translate_predict.js – Includes functionality related to prediction
  • delete_model.js - Include functionality to delete a model

Running the application

Step 1: Create a dataset

The first step in creating a custom model is to create an empty dataset that will eventually hold the training data for the model. When you create a dataset, you specify the source and target languages for the translation.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# display_name = "YOUR_DATASET_NAME"

client = automl.AutoMlClient()

# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# For a list of supported languages, see:
# https://cloud.google.com/translate/automl/docs/languages
dataset_metadata = automl.TranslationDatasetMetadata(
    source_language_code="en", target_language_code="ja"
)
dataset = automl.Dataset(
    display_name=display_name,
    translation_dataset_metadata=dataset_metadata,
)

# Create a dataset with the dataset metadata in the region.
response = client.create_dataset(parent=project_location, dataset=dataset)

created_dataset = response.result()

# Display the dataset information
print("Dataset name: {}".format(created_dataset.name))
print("Dataset id: {}".format(created_dataset.name.split("/")[-1]))

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Dataset;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.TranslationDatasetMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class TranslateCreateDataset {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String displayName = "YOUR_DATASET_NAME";
    createDataset(projectId, displayName);
  }

  // Create a dataset
  static void createDataset(String projectId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Specify the source and target language.
      TranslationDatasetMetadata translationDatasetMetadata =
          TranslationDatasetMetadata.newBuilder()
              .setSourceLanguageCode("en")
              .setTargetLanguageCode("ja")
              .build();
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(displayName)
              .setTranslationDatasetMetadata(translationDatasetMetadata)
              .build();
      OperationFuture<Dataset, OperationMetadata> future =
          client.createDatasetAsync(projectLocation, dataset);

      Dataset createdDataset = future.get();

      // Display the dataset information.
      System.out.format("Dataset name: %s\n", createdDataset.getName());
      // To get the dataset id, you have to parse it out of the `name` field. As dataset Ids are
      // required for other methods.
      // Name Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
      String[] names = createdDataset.getName().split("/");
      String datasetId = names[names.length - 1];
      System.out.format("Dataset id: %s\n", datasetId);
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function createDataset() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    dataset: {
      displayName: displayName,
      translationDatasetMetadata: {
        sourceLanguageCode: 'en',
        targetLanguageCode: 'ja',
      },
    },
  };

  // Create dataset
  const [operation] = await client.createDataset(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();

  console.log(`Dataset name: ${response.name}`);
  console.log(`
    Dataset id: ${
      response.name
        .split('/')
        [response.name.split('/').length - 1].split('\n')[0]
    }`);
}

createDataset();

Request

Run the create_dataset function to create an empty dataset. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the display_name for the dataset (en_es_dataset)
  • Modify the target_language_code field from ja to es

Python

python translate_create_dataset.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.TranslateCreateDataset"

Node.js

node translate_create_dataset.js

Response

The response includes the details of the newly created dataset, including the Dataset ID that you'll use to reference the dataset in future requests. We recommend that you set an environment variable DATASET_ID to the returned Dataset ID value.

Dataset name: projects/216065747626/locations/us-central1/datasets/TRL7372141011130533778
Dataset id: TRL7372141011130533778
Dataset display name: en_es_dataset
Translation dataset Metadata:
        source_language_code: en
        target_language_code: es
Dataset example count: 0
Dataset create time:
       seconds: 1530251987
       nanos: 216586000

Step 2: Import training sentence pairs into the dataset

The next step is to populate the dataset with a list of training sentence pairs.

The import_dataset function interface takes as input a .csv file that lists the locations of all training documents and the proper label for each training document. (See Prepare your data for details about the required format.) For this tutorial, we will be using en-es.csv, which you uploaded to Google Cloud Storage above.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# path = "gs://YOUR_BUCKET_ID/path/to/data.csv"

client = automl.AutoMlClient()
# Get the full path of the dataset.
dataset_full_id = client.dataset_path(project_id, "us-central1", dataset_id)
# Get the multiple Google Cloud Storage URIs
input_uris = path.split(",")
gcs_source = automl.GcsSource(input_uris=input_uris)
input_config = automl.InputConfig(gcs_source=gcs_source)
# Import data from the input URI
response = client.import_data(name=dataset_full_id, input_config=input_config)

print("Processing import...")
print("Data imported. {}".format(response.result()))

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DatasetName;
import com.google.cloud.automl.v1.GcsSource;
import com.google.cloud.automl.v1.InputConfig;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.Arrays;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

class ImportDataset {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String path = "gs://BUCKET_ID/path_to_training_data.csv";
    importDataset(projectId, datasetId, path);
  }

  // Import a dataset
  static void importDataset(String projectId, String datasetId, String path)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the complete path of the dataset.
      DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);

      // Get multiple Google Cloud Storage URIs to import data from
      GcsSource gcsSource =
          GcsSource.newBuilder().addAllInputUris(Arrays.asList(path.split(","))).build();

      // Import data from the input URI
      InputConfig inputConfig = InputConfig.newBuilder().setGcsSource(gcsSource).build();
      System.out.println("Processing import...");

      // Start the import job
      OperationFuture<Empty, OperationMetadata> operation =
          client.importDataAsync(datasetFullId, inputConfig);

      System.out.format("Operation name: %s%n", operation.getName());

      // If you want to wait for the operation to finish, adjust the timeout appropriately. The
      // operation will still run if you choose not to wait for it to complete. You can check the
      // status of your operation using the operation's name.
      Empty response = operation.get(45, TimeUnit.MINUTES);
      System.out.format("Dataset imported. %s%n", response);
    } catch (TimeoutException e) {
      System.out.println("The operation's polling period was not long enough.");
      System.out.println("You can use the Operation's name to get the current status.");
      System.out.println("The import job is still running and will complete as expected.");
      throw e;
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const datasetId = 'YOUR_DISPLAY_ID';
// const path = 'gs://BUCKET_ID/path_to_training_data.csv';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function importDataset() {
  // Construct request
  const request = {
    name: client.datasetPath(projectId, location, datasetId),
    inputConfig: {
      gcsSource: {
        inputUris: path.split(','),
      },
    },
  };

  // Import dataset
  console.log('Proccessing import');
  const [operation] = await client.importData(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Dataset imported: ${response}`);
}

importDataset();

Request

Run the import_data function to import the training content. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the dataset_id for the dataset (from the output of the previous step)
  • Set the path which is the URI of the (gs://YOUR_PROJECT_ID-vcm/en-es.csv)

Python

python import_dataset.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.ImportDataset"

Node.js

node import_dataset.js

Response

Processing import...
Dataset imported.

Step 3: Create (train) the model

Now that you have a dataset of labeled training documents, you can train a new model.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# display_name = "YOUR_MODEL_NAME"

client = automl.AutoMlClient()

# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
translation_model_metadata = automl.TranslationModelMetadata()
model = automl.Model(
    display_name=display_name,
    dataset_id=dataset_id,
    translation_model_metadata=translation_model_metadata,
)

# Create a model with the model metadata in the region.
response = client.create_model(parent=project_location, model=model)

print("Training operation name: {}".format(response.operation.name))
print("Training started...")

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.TranslationModelMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class TranslateCreateModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String displayName = "YOUR_DATASET_NAME";
    createModel(projectId, datasetId, displayName);
  }

  // Create a model
  static void createModel(String projectId, String datasetId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      TranslationModelMetadata translationModelMetadata =
          TranslationModelMetadata.newBuilder().build();
      Model model =
          Model.newBuilder()
              .setDisplayName(displayName)
              .setDatasetId(datasetId)
              .setTranslationModelMetadata(translationModelMetadata)
              .build();

      // Create a model with the model metadata in the region.
      OperationFuture<Model, OperationMetadata> future =
          client.createModelAsync(projectLocation, model);
      // OperationFuture.get() will block until the model is created, which may take several hours.
      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Training operation name: %s\n", future.getInitialFuture().get().getName());
      System.out.println("Training started...");
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const dataset_id = 'YOUR_DATASET_ID';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function createModel() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    model: {
      displayName: displayName,
      datasetId: datasetId,
      translationModelMetadata: {},
    },
  };

  // Don't wait for the LRO
  const [operation] = await client.createModel(request);
  console.log('Training started...');
  console.log(`Training operation name: ${operation.name}`);
}

createModel();

Request

To run create_model, you must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the dataset_id for the dataset (from the output of the previous step)
  • Set the display_name for the new model (en_es_test_model)

Python

python translate_create_model.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.TranlateCreateModel"

Node.js

node translate_create_model.js

Response

The create_model function kicks off a training operation and prints the operation name. Training happens asynchronously and can take a while to complete, so you can use the operation ID to check training status. When training is complete, create_model returns the Model ID. As with the Dataset ID, you might want to set an environment variable MODEL_ID to the returned Model ID value.

Training operation name: projects/216065747626/locations/us-central1/operations/TRL3007727620979824033
Training started...
Model name: projects/216065747626/locations/us-central1/models/TRL3007727620979824033
Model id: TRL3007727620979824033
Model display name: en_es_test_model
Model create time:
        seconds: 1529649600
        nanos: 966000000
Model deployment state: deployed

Step 4: Evaluate the model

After training, you can evaluate your model's readiness by reviewing its BLEU score.

The list_model_evaluations function takes the Model ID as a parameter.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

print("List of model evaluations:")
for evaluation in client.list_model_evaluations(parent=model_full_id, filter=""):
    print("Model evaluation name: {}".format(evaluation.name))
    print("Model annotation spec id: {}".format(evaluation.annotation_spec_id))
    print("Create Time: {}".format(evaluation.create_time))
    print("Evaluation example count: {}".format(evaluation.evaluated_example_count))
    print(
        "Translation model evaluation metrics: {}".format(
            evaluation.translation_evaluation_metrics
        )
    )

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.


import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ListModelEvaluationsRequest;
import com.google.cloud.automl.v1.ModelEvaluation;
import com.google.cloud.automl.v1.ModelName;
import java.io.IOException;

class ListModelEvaluations {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    listModelEvaluations(projectId, modelId);
  }

  // List model evaluations
  static void listModelEvaluations(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      ListModelEvaluationsRequest modelEvaluationsrequest =
          ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();

      // List all the model evaluations in the model by applying filter.
      System.out.println("List of model evaluations:");
      for (ModelEvaluation modelEvaluation :
          client.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {

        System.out.format("Model Evaluation Name: %s\n", modelEvaluation.getName());
        System.out.format("Model Annotation Spec Id: %s", modelEvaluation.getAnnotationSpecId());
        System.out.println("Create Time:");
        System.out.format("\tseconds: %s\n", modelEvaluation.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s", modelEvaluation.getCreateTime().getNanos() / 1e9);
        System.out.format(
            "Evalution Example Count: %d\n", modelEvaluation.getEvaluatedExampleCount());
        System.out.format(
            "Translate Model Evaluation Metrics: %s\n",
            modelEvaluation.getTranslationEvaluationMetrics());
      }
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listModelEvaluations() {
  // Construct request
  const request = {
    parent: client.modelPath(projectId, location, modelId),
    filter: '',
  };

  const [response] = await client.listModelEvaluations(request);

  console.log('List of model evaluations:');
  for (const evaluation of response) {
    console.log(`Model evaluation name: ${evaluation.name}`);
    console.log(`Model annotation spec id: ${evaluation.annotationSpecId}`);
    console.log(`Model display name: ${evaluation.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${evaluation.createTime.seconds}`);
    console.log(`\tnanos ${evaluation.createTime.nanos / 1e9}`);
    console.log(
      `Evaluation example count: ${evaluation.evaluatedExampleCount}`
    );
    console.log(
      `Translation model evaluation metrics: ${evaluation.translationEvaluationMetrics}`
    );
  }
}

listModelEvaluations();

Request

Make a request to display the overall evaluation performance of the model by executing the following request. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id

Python

python list_model_evaluations.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.ListModelEvaluations"

Node.js

node list_model_evaluations.js

Response

If the BLEU score is too low, you can strengthen the training dataset and re-train your model. For more information, see Evaluating models.

List of model evaluations:
name: "projects/216065747626/locations/us-central1/models/5419131644870929143/modelEvaluations/TRL7683346839371803263"
create_time {
  seconds: 1530196488
  nanos: 509247000
}
evaluated_example_count: 3
translation_evaluation_metrics {
  bleu_score: 19.23076957464218
  base_bleu_score: 11.428571492433548
}

Step 5: Use a model to make a prediction

When your custom model meets your quality standards, you can use it to translate novel content.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# file_path = "path_to_local_file.txt"

prediction_client = automl.PredictionServiceClient()

# Get the full path of the model.
model_full_id = automl.AutoMlClient.model_path(project_id, "us-central1", model_id)

# Read the file content for translation.
with open(file_path, "rb") as content_file:
    content = content_file.read()
content.decode("utf-8")

text_snippet = automl.TextSnippet(content=content)
payload = automl.ExamplePayload(text_snippet=text_snippet)

response = prediction_client.predict(name=model_full_id, payload=payload)
translated_content = response.payload[0].translation.translated_content

print(u"Translated content: {}".format(translated_content.content))

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.

import com.google.cloud.automl.v1.ExamplePayload;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.PredictRequest;
import com.google.cloud.automl.v1.PredictResponse;
import com.google.cloud.automl.v1.PredictionServiceClient;
import com.google.cloud.automl.v1.TextSnippet;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

class TranslatePredict {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String filePath = "path_to_local_file.txt";
    predict(projectId, modelId, filePath);
  }

  static void predict(String projectId, String modelId, String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);

      String content = new String(Files.readAllBytes(Paths.get(filePath)));

      TextSnippet textSnippet = TextSnippet.newBuilder().setContent(content).build();
      ExamplePayload payload = ExamplePayload.newBuilder().setTextSnippet(textSnippet).build();
      PredictRequest predictRequest =
          PredictRequest.newBuilder().setName(name.toString()).setPayload(payload).build();

      PredictResponse response = client.predict(predictRequest);
      TextSnippet translatedContent =
          response.getPayload(0).getTranslation().getTranslatedContent();
      System.out.format("Translated Content: %s\n", translatedContent.getContent());
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const filePath = 'path_to_local_file.txt';

// Imports the Google Cloud AutoML library
const {PredictionServiceClient} = require('@google-cloud/automl').v1;
const fs = require('fs');

// Instantiates a client
const client = new PredictionServiceClient();

// Read the file content for translation.
const content = fs.readFileSync(filePath, 'utf8');

async function predict() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    payload: {
      textSnippet: {
        content: content,
      },
    },
  };

  const [response] = await client.predict(request);

  console.log(
    'Translated content: ',
    response.payload[0].translation.translatedContent.content
  );
}

predict();

Request

For the predict function you must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id
  • Set the file_path to the downloaded file ("resources/input.txt")

Python

python tranlsate_predict.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.TranslatePredict"

Node.js

node translate_predict.js predict

Response

The function returns the translated content.

Translated content: Ver y administrar tus cuentas de Google Tag Manager.

Above is the Spanish translation for the English sentence: “View and manage your Google Tag Manager accounts.” Contrast this custom translation with the translation from the base Google model:

Ver y administrar sus cuentas de Administrador de etiquetas de Google

Step 6: Delete a model

When you are done using this sample model, you can delete it permanently. You will no longer be able to use the model for prediction.

Copy the Code

Python

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Python API reference documentation.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))

Java

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Java API reference documentation.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

To learn how to install and use the client library for AutoML Translation, see AutoML Translation client libraries. For more information, see the AutoML Translation Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Request

Make a request with operation type delete_model to delete a model you created you must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id

Python

python delete_model.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.DeleteModel"

Node.js

node delete_model.js

Response

Model deleted.