Opérations TensorFlow disponibles

Cette page répertorie les API et opérateurs de graphes Python pour Tensorflow disponibles sur Cloud TPU.

API Python disponibles

La liste ci-dessous est un guide de l'ensemble des API TensorFlow Python disponibles. Cette liste n'est pas exhaustive. Les fonctions de bibliothèque ne figurant pas dans cette liste peuvent fonctionner si elles sont constituées de primitives accessibles.

Pour plus d'informations sur des opérateurs spécifiques, consultez le guide relatif aux performances.

Module API Python disponible Commentaires
tf tf.abs
tf.acosh
tf.add
tf.add_n
tf.angle
tf.arg_max L'argument dimension doit être une constante de temps de compilation.
tf.arg_min L'argument dimension doit être une constante de temps de compilation.
tf.asinh
tf.assign Disponible uniquement pour la variable de ressource.
tf.assign_add Disponible uniquement pour la variable de ressource.
tf.assign_sub Disponible uniquement pour la variable de ressource.
tf.atan
tf.atan2
tf.atanh
tf.batch_to_space Les arguments crops et block_shape doivent être des constantes de temps de compilation.
tf.batch_to_space_nd L'argument crops doit être une constante de temps de compilation.
tf.broadcast_dynamic_shape
tf.broadcast_static_shape
tf.case Expérimental (flux de contrôle). Le fonctionnement n'est pas encore totalement fiable.
tf.cast
tf.ceil
tf.cholesky Expérimental. Susceptible de poser des problèmes de précision numérique.
tf.cholesky_solve Expérimental. Susceptible de poser des problèmes de précision numérique.
tf.clip_by_average_norm
tf.clip_by_global_norm
tf.clip_by_norm
tf.clip_by_value
tf.complex
tf.concat concat_dim doit être une constante de temps de compilation.
tf.cond Expérimental (flux de contrôle). Le fonctionnement n'est pas encore totalement fiable.
tf.conj
tf.constant
tf.convert_to_tensor
tf.cos
tf.cosh
tf.cross
tf.cumprod axis doit être une constante de temps de compilation.
tf.cumsum axis doit être une constante de temps de compilation.
tf.depth_to_space
tf.diag
tf.diag_part
tf.div La division int32 est plus lente que les autres types.
tf.divide La division int32 est plus lente que les autres types.
tf.dynamic_stitch indices doit être une constante de temps de compilation.
tf.einsum
tf.equal
tf.erf
tf.erfc
tf.exp
tf.expand_dims dims doit être une constante de temps de compilation.
tf.expm1
tf.extract_image_patches
tf.eye
tf.fake_quant_with_min_max_args
tf.fake_quant_with_min_max_args_gradient
tf.fake_quant_with_min_max_vars
tf.fake_quant_with_min_max_vars_gradient
tf.fft Expérimental.
tf.fft2d Expérimental.
tf.fft3d Expérimental.
tf.fill L'argument dims doit être une constante de temps de compilation.
tf.floor
tf.floordiv
tf.floormod
tf.foldl Expérimental (flux de contrôle).
tf.foldr Expérimental (flux de contrôle).
tf.gather axis doit être une constante de temps de compilation.
tf.gather_nd
tf.greater
tf.greater_equal
tf.hessians Expérimental (flux de contrôle).
tf.identity
tf.identity_n
tf.ifft Expérimental.
tf.ifft2d Expérimental.
tf.ifft3d Expérimental.
tf.imag
tf.invert_permutation L'argument x doit être une constante de temps de compilation.
tf.is_finite
tf.is_inf
tf.is_nan
tf.is_non_decreasing
tf.is_strictly_increasing
tf.less
tf.less_equal
tf.linspace Les arguments start, stop et num doivent être des constantes de temps de compilation.
tf.log
tf.log1p
tf.log_sigmoid
tf.logical_and
tf.logical_or
tf.logical_not
tf.logical_xor
tf.matmul Utilise un matmul bfloat16 avec une charge float32.
tf.matrix_band_part
tf.matrix_diag
tf.matrix_diag_part
tf.matrix_set_diag
tf.matrix_triangular_solve Expérimental. Susceptible de poser des problèmes de précision numérique.
tf.maximum
tf.meshgrid
tf.minimum
tf.mod
tf.multinomial L'argument num_samples doit être une constante de temps de compilation.
tf.multiply
tf.negative
tf.no_op
tf.norm
tf.not_equal
tf.one_hot depth doit être une constante de temps de compilation.
tf.ones
tf.ones_like
tf.pad L'argument paddings doit être une constante de temps de compilation. Le gradient de remplissage REFLECT n'est pas encore disponible.
tf.pow
tf.random_normal shape doit être une constante de temps de compilation.
tf.random_uniform shape doit être une constante de temps de compilation.
tf.range Les arguments start, limit et delta doivent être des constantes de temps de compilation.
tf.rank
tf.real
tf.realdiv
tf.reciprocal
tf.reduce_all axis doit être une constante de temps de compilation.
tf.reduce_any axis doit être une constante de temps de compilation.
tf.reduce_logsumexp
tf.reduce_max axis doit être une constante de temps de compilation.
tf.reduce_min axis doit être une constante de temps de compilation.
tf.reduce_prod axis doit être une constante de temps de compilation.
tf.reduce_sum axis doit être une constante de temps de compilation.
tf.reshape L'argument shape doit être une constante de temps de compilation.
tf.reverse L'argument dims doit être une constante de temps de compilation.
tf.reverse_sequence
tf.reverse_v2 L'argument axis doit être une constante de temps de compilation.
tf.rint
tf.round
tf.rsqrt
tf.saturate_cast
tf.scalar_mul
tf.scan Expérimental (flux de contrôle).
tf.scatter_nd
tf.sequence_mask
tf.shape
tf.shape_n
tf.sigmoid
tf.sign
tf.sin
tf.sinh
tf.size
tf.slice size doit être une constante de temps de compilation. De plus, begin doit être une constante de temps compilation ou size doit être une valeur négative. La rétropropagation n'est prise en charge que si begin et size sont des constantes de temps de compilation.
tf.space_to_batch paddings et block_shape doivent être des constantes de temps de compilation.
tf.space_to_batch_nd paddings doit être une constante de temps de compilation.
tf.space_to_depth
tf.split axis doit être une constante de temps de compilation.
tf.sqrt
tf.square
tf.squared_difference
tf.squeeze
tf.stack
tf.stop_gradient
tf.strided_slice
tf.tan
tf.tanh
tf.tensordot
tf.tile L'argument multiples doit être une constante de temps de compilation.
tf.to_bfloat16
tf.to_float
tf.to_int32
tf.to_int64 La compatibilité int64 est limitée.
tf.trace
tf.transpose L'argument perm doit être une constante de temps de compilation.
tf.truediv
tf.truncated_normal shape doit être une constante de temps de compilation.
tf.truncatediv
tf.truncatemod
tf.unsorted_segment_sum
tf.unstack
tf.where Les valeurs x et y ne doivent pas toutes les deux être différentes de None. Si les valeurs x et y sont toutes les deux None, la forme de l'opérateur n'est pas statique.
tf.while_loop Le calcul du gradient d'une boucle "while" nécessite que l'argument maximum_iterations soit transmis.
tf.zeros
tf.zeros_like
tf.Tensor.__getitem__ Le début, la fin et les pas d'une tranche doivent être des constantes connues à la compilation.
tf.bitwise tf.bitwise_and
tf.bitwise_or
tf.bitwise_invert
tf.contrib.stateless tf.contrib.stateless.stateless_random_normal
tf.contrib.stateless.stateless_random_uniform
tf.image tf.image.adjust_brightness
tf.image.adjust_contrast
tf.image.adjust_gamma
tf.image.adjust_hue
tf.image.adjust_saturation
tf.image.central_crop Le facteur de recadrage doit être une constante connue à la compilation.
tf.image.convert_image_dtype
tf.image.flip_left_right
tf.image.flip_up_down
tf.image.grayscale_to_rgb
tf.image.hsv_to_rgb
tf.image.resize_bilinear Seul align_corners=True est disponible. size doit être une constante de temps de compilation.
tf.image.random_brightness
tf.image.random_contrast
tf.image.random_flip_left_right
tf.image.random_flip_up_down
tf.image.random_hue
tf.image.random_saturation
tf.image.rgb_to_hsv
tf.image.rgb_to_grayscale
tf.image.rot90
tf.image.total_variation
tf.image.transpose_image
tf.layers tf.layers.average_pooling1d
tf.layers.average_pooling2d
tf.layers.average_pooling1d
tf.layers.batch_normalization
tf.layers.conv1d
tf.layers.conv2d
tf.layers.conv2d_transpose
tf.layers.conv3d
tf.layers.conv3d_transpose
tf.layers.dense
tf.layers.dropout
tf.layers.flatten
tf.layers.max_pooling1d
tf.layers.max_pooling2d
tf.layers.max_pooling3d
tf.layers.separable_conv2d
tf.nn tf.nn.atrous_conv2d
tf.nn.atrous_conv2d_transpose
tf.nn.avg_pool
tf.nn.avg_pool3d
tf.nn.batch_normalization
tf.nn.bias_add
tf.nn.conv1d
tf.nn.conv2d
tf.nn.conv2d_backprop_filter
tf.nn.conv2d_backprop_input
tf.nn.conv2d_transpose
tf.nn.conv3d
tf.nn.conv3d_backprop_filter
tf.nn.conv3d_backprop_input
tf.nn.conv3d_transpose
tf.nn.convolution
tf.nn.crelu
tf.nn.depthwise_conv2d
tf.nn.depthwise_conv2d_native
tf.nn.depthwise_conv2d_native_backprop_filter
tf.nn.depthwise_conv2d_native_backprop_input
tf.nn.dropout
tf.nn.dynamic_rnn Expérimental.
tf.nn.elu
tf.nn.fused_batch_norm
tf.nn.l2_loss
tf.nn.l2_normalize
tf.nn.leaky_relu
tf.nn.local_response_normalization
tf.nn.log_poisson_loss
tf.nn.log_softmax
tf.nn.max_pool
tf.nn.max_pool3d
tf.nn.moments
tf.nn.normalize_moments
tf.nn.pool
tf.nn.relu
tf.nn.relu6
tf.nn.relu_layer
tf.nn.selu
tf.nn.separable_conv2d
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.softmax
tf.nn.softmax_cross_entropy_with_logits
tf.nn.softplus
tf.nn.softsign
tf.nn.sparse_softmax_cross_entropy_with_logits
tf.nn.static_bidirectional_rnn Expérimental.
tf.nn.static_rnn Expérimental.
tf.nn.weighted_cross_entropy_with_logits Expérimental.
tf.nn.weighted_moments
tf.nn.with_space_to_batch
tf.nn.xw_plus_b
tf.nn.zero_fraction
tf.spectral tf.spectral.fft Expérimental.
tf.spectral.fft2d Expérimental.
tf.spectral.fft3d Expérimental.
tf.spectral.ifft Expérimental.
tf.spectral.ifft2d Expérimental.
tf.spectral.ifft3d Expérimental.
tf.spectral.irfft Expérimental. fft_length doit être une constante de temps de compilation.
tf.spectral.irfft2d Expérimental. fft_length doit être une constante de temps de compilation.
tf.spectral.irfft3d Expérimental. fft_length doit être une constante de temps de compilation.
tf.spectral.rfft Expérimental. fft_length doit être une constante de temps de compilation.
tf.spectral.rfft2d Expérimental. fft_length doit être une constante de temps de compilation.
tf.spectral.rfft3d Expérimental. fft_length doit être une constante de temps de compilation.

API Python non disponibles

Cette liste n'est pas exhaustive. Les opérations non disponibles sur Cloud TPU incluent :

Module API Python non disponible Commentaires
tf tf.accumulate_n Utilise des variables Ref.
tf.acos
tf.asin
tf.betainc
tf.bitcast
tf.add_check_numerics_ops Les programmes contenant des opérateurs de vérification des nombres devraient s’exécuter, mais ce type d'opérateur n'est actuellement pas pris en compte.
tf.assert_... Les programmes contenant des assertions devraient s'exécuter, mais les assertions ne sont pas prises en compte.
tf.check_numerics Les programmes contenant des opérateurs de vérification des nombres devraient s’exécuter, mais ce type d'opérateur n'est actuellement pas pris en compte.
tf.confusion_matrix
tf.count_nonzero Utilise une réduction int64.
tf.count_up_to
tf.create_partitioned_variables
tf.dequantize
tf.digamma
tf.dynamic_partition
tf.edit_distance
tf.fake_quant_with_min_max_vars_per_channel
tf.fake_quant_with_min_max_vars_per_channel_gradient
tf.histogram_fixed_width
tf.igamma
tf.igammac
tf.lbeta
tf.lgamma
tf.matrix_determinant
tf.matrix_inverse
tf.matrix_solve
tf.matrix_solve_ls
tf.polygamma
tf.py_func
tf.qr
tf.quantize_v2
tf.quantized_concat
tf.random_crop
tf.random_gamma
tf.random_poisson
tf.random_shuffle
tf.scatter_add
tf.scatter_div
tf.scatter_mul
tf.scatter_nd_add
tf.scatter_nd_sub
tf.scatter_nd_update
tf.segment_mean
tf.segment_max
tf.segment_min
tf.segment_prod
tf.segment_sum
tf.self_adjoint_eig
tf.self_adjoint_eigvals
tf.setdiff1d
tf.sparse_...
tf.string_...
tf.substr
tf.svd
tf.to_double
tf.unique
tf.unsorted_segment_max
tf.zeta
tf.bitwise.bitwise_xor
tf.contrib.stateless.stateless_truncated_normal

Opérateurs de graphes disponibles

Opérateur Contrainte de type
Abs T={bfloat16,float,int32,int64}
Acos T={bfloat16,complex64,float,int32,int64}
Acosh T={bfloat16,complex64,float}
Add T={bfloat16,complex64,float,int32,int64}
AddN T={bfloat16,complex64,float,int32,int64,uint32,uint64}
AdjustContrastv2 T={float}
AdjustHue T={float}
AdjustSaturation T={float}
All Tidx={int32,int64}
AllToAll T={bfloat16,float}
Angle Tout={float}
T={complex64}
Any Tidx={int32,int64}
ApproximateEqual T={bfloat16,complex64,float,int32,int64,uint32,uint64}
ArgMax Tidx={int32,int64}
output_type={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
ArgMin Tidx={int32,int64}
output_type={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
Asin T={bfloat16,complex64,float,int32,int64}
Asinh T={bfloat16,complex64,float}
Assert T={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64}
AssignAddVariableOp dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
AssignSubVariableOp dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
AssignVariableOp dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Atan T={bfloat16,complex64,float,int32,int64}
Atan2 T={bfloat16,float}
Atanh T={bfloat16,complex64,float}
AvgPool T={bfloat16,float}
AvgPool3D T={bfloat16,float}
AvgPool3DGrad T={bfloat16,float}
AvgPoolGrad T={bfloat16,float}
BatchMatMul T={bfloat16,complex64,float,int32,int64}
BatchToSpace Tidx={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
BatchToSpaceND Tcrops={int32,int64}
Tblock_shape={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
BiasAdd T={bfloat16,complex64,float,int32,int64,uint32,uint64}
BiasAddGrad T={bfloat16,complex64,float,int32,int64,uint32,uint64}
BiasAddV1 T={bfloat16,complex64,float,int32,int64,uint32,uint64}
Bitcast type={bfloat16,complex64,float,int32,int64,uint32,uint64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
BitwiseAnd T={int32,int64,uint32,uint64}
BitwiseOr T={int32,int64,uint32,uint64}
BitwiseXor T={int32,int64,uint32,uint64}
BroadcastArgs T={int32,int64}
BroadcastGradientArgs T={int32,int64}
BroadcastTo Tidx={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Bucketize T={float,int32,int64}
Cast DstT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
SrcT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Ceil T={bfloat16,float}
CheckNumerics T={bfloat16,float}
Cholesky T={float}
ClipByValue T={bfloat16,complex64,float,int32,int64,uint32,uint64}
CollectivePermute T={bfloat16,float}
Complex Tout={complex64}
T={float}
ComplexAbs Tout={float}
T={complex64}
Concat T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ConcatOffset
ConcatV2 Tidx={int32}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Conj T={complex64}
ConjugateTranspose Tperm={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Const dtype={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64}
ControlTrigger
Conv2D T={bfloat16,float}
Conv2DBackpropFilter T={bfloat16,float}
Conv2DBackpropInput T={bfloat16,float}
Conv3D T={bfloat16,float}
Conv3DBackpropFilterV2 T={bfloat16,float}
Conv3DBackpropInputV2 Tshape={int32,int64}
T={bfloat16,float}
Cos T={bfloat16,complex64,float}
Cosh T={bfloat16,complex64,float}
Cross T={bfloat16,float,int32,int64,uint32,uint64}
CrossReplicaSum T={bfloat16,float}
Cumprod Tidx={int32,int64}
T={bfloat16,float,int32}
Cumsum Tidx={int32,int64}
T={bfloat16,float,int32}
DataFormatVecPermute T={int32,int64}
DepthToSpace T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
DepthwiseConv2dNative T={bfloat16,float}
DepthwiseConv2dNativeBackpropFilter T={bfloat16,float}
DepthwiseConv2dNativeBackpropInput T={bfloat16,float}
Diag T={bfloat16,complex64,float,int32,int64}
DiagPart T={bfloat16,complex64,float,int32,int64}
Digamma T={bfloat16,float}
Div T={bfloat16,complex64,float,int32,int64}
DivNoNan T={float}
DynamicStitch T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Elu T={bfloat16,float}
EluGrad T={bfloat16,float}
Empty dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
EmptyTensorList shape_type={int32,int64}
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Equal T={bfloat16,bool,complex64,float,int32,int64}
Erf T={bfloat16,float}
Erfc T={bfloat16,float}
Exp T={bfloat16,complex64,float}
ExpandDims Tdim={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Expm1 T={bfloat16,complex64,float}
ExtractImagePatches T={bfloat16,float,int32,int64,uint32,uint64}
FFT Tcomplex={complex64}
FFT2D Tcomplex={complex64}
FFT3D Tcomplex={complex64}
FakeParam dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
FakeQuantWithMinMaxArgs
FakeQuantWithMinMaxArgsGradient
FakeQuantWithMinMaxVars
FakeQuantWithMinMaxVarsGradient
Fill index_type={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Floor T={bfloat16,float}
FloorDiv T={bfloat16,complex64,float,int32,int64}
FloorMod T={bfloat16,float,int32,int64}
FusedBatchNorm T={float}
FusedBatchNormGrad T={float}
FusedBatchNormGradV2 U={float}
T={bfloat16,float}
FusedBatchNormV2 U={float}
T={bfloat16,float}
Gather Tindices={int32,int64}
Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
GatherNd Tindices={int32,int64}
Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
GatherV2 Taxis={int32,int64}
Tindices={int32,int64}
Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
GetItem T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Greater T={bfloat16,float,int32,int64,uint32,uint64}
GreaterEqual T={bfloat16,float,int32,int64,uint32,uint64}
HSVToRGB T={bfloat16,float}
IFFT Tcomplex={complex64}
IFFT2D Tcomplex={complex64}
IFFT3D Tcomplex={complex64}
IRFFT
IRFFT2D
IRFFT3D
Identity T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
IdentityN T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
If Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Imag Tout={float}
T={complex64}
InfeedDequeue dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
InfeedDequeueTuple dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
InplaceAdd T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
InplaceUpdate T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Inv T={bfloat16,complex64,float,int32,int64}
Invert T={int32,int64,uint32,uint64}
InvertPermutation T={int32}
IsFinite T={bfloat16,float}
IsInf T={bfloat16,float}
IsNan T={bfloat16,float}
L2Loss T={bfloat16,float}
LRN T={bfloat16,float}
LRNGrad T={bfloat16,float}
LeakyRelu T={bfloat16,float}
LeakyReluGrad T={bfloat16,float}
LeftShift T={int32,int64,uint32,uint64}
Less T={bfloat16,float,int32,int64,uint32,uint64}
LessEqual T={bfloat16,float,int32,int64,uint32,uint64}
Lgamma T={bfloat16,float}
LinSpace Tidx={int32,int64}
T={bfloat16,float}
ListDiff out_idx={int32,int64}
T={int32,int64}
Log T={bfloat16,complex64,float}
Log1p T={bfloat16,complex64,float}
LogSoftmax T={bfloat16,float}
LogicalAnd
LogicalNot
LogicalOr
MatMul T={bfloat16,complex64,float}
MatrixBandPart Tindex={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
MatrixDiag T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
MatrixDiagPart T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
MatrixSetDiag T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
MatrixTriangularSolve T={complex64,float}
Max Tidx={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
MaxPool T={bfloat16,float,int32,int64}
MaxPool3D T={bfloat16,float}
MaxPool3DGrad TInput={bfloat16,float}
T={bfloat16,float}
MaxPool3DGradGrad T={float}
MaxPoolGrad T={bfloat16,float,int32,int64,uint32,uint64}
MaxPoolGradGrad T={float}
MaxPoolGradGradV2 T={float}
MaxPoolGradV2 T={bfloat16,float,int32,int64,uint32,uint64}
MaxPoolV2 T={bfloat16,float,int32,int64}
Maximum T={bfloat16,float,int32,int64}
Mean Tidx={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
Min Tidx={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
Minimum T={bfloat16,float,int32,int64}
MirrorPad Tpaddings={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Mod T={bfloat16,float,int32,int64}
Mul T={bfloat16,complex64,float,int32,int64}
Multinomial output_dtype={int32,int64}
T={bfloat16,float,int32,int64,uint32,uint64}
Neg T={bfloat16,complex64,float,int32,int64}
NoOp
NonMaxSuppressionV4 T={float}
NotEqual T={bfloat16,bool,complex64,float,int32,int64}
OneHot TI={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
OnesLike T={bfloat16,bool,complex64,float,int32,int64}
OutfeedEnqueue dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
OutfeedEnqueueTuple dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Pack T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Pad Tpaddings={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
PadV2 Tpaddings={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ParallelDynamicStitch T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
PlaceholderWithDefault dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Pow T={bfloat16,complex64,float,int32,int64}
PreventGradient T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Prod Tidx={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
Qr T={float}
QuantizeAndDequantizeV2 T={bfloat16,float}
QuantizeAndDequantizeV3 T={bfloat16,float}
RFFT
RFFT2D
RFFT3D
RGBToHSV T={bfloat16,float}
RandomShuffle T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
RandomStandardNormal T={int32,int64}
dtype={bfloat16,float}
RandomUniform T={int32,int64}
dtype={bfloat16,float}
RandomUniformInt T={int32,int64}
Tout={int32,int64}
Range Tidx={bfloat16,float,int32,int64}
Rank T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ReadVariableOp dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Real Tout={float}
T={complex64}
RealDiv T={bfloat16,complex64,float,int32,int64}
Reciprocal T={bfloat16,complex64,float,int32,int64}
ReciprocalGrad T={bfloat16,complex64,float}
RecvTPUEmbeddingActivations
Relu T={bfloat16,float,int32,int64,uint32,uint64}
Relu6 T={bfloat16,float,int32,int64,uint32,uint64}
Relu6Grad T={bfloat16,float,int32,int64,uint32,uint64}
ReluGrad T={bfloat16,float,int32,int64,uint32,uint64}
Reshape Tshape={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResizeBilinear T={bfloat16,float,int32,int64}
ResizeBilinearGrad T={bfloat16,float}
ResizeNearestNeighbor T={float,int32,int64}
ResourceApplyAdaMax T={bfloat16,float}
ResourceApplyAdadelta T={bfloat16,float}
ResourceApplyAdagrad T={bfloat16,float}
ResourceApplyAdagradDA T={bfloat16,float}
ResourceApplyAdam T={bfloat16,float}
ResourceApplyAddSign T={bfloat16,float}
ResourceApplyCenteredRMSProp T={bfloat16,float}
ResourceApplyFtrl T={bfloat16,float}
ResourceApplyFtrlV2 T={bfloat16,float}
ResourceApplyGradientDescent T={bfloat16,float}
ResourceApplyKerasMomentum T={bfloat16,float}
ResourceApplyMomentum T={bfloat16,float}
ResourceApplyPowerSign T={bfloat16,float}
ResourceApplyProximalAdagrad T={bfloat16,float}
ResourceApplyProximalGradientDescent T={bfloat16,float}
ResourceApplyRMSProp T={bfloat16,float}
ResourceGather Tindices={int32,int64}
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResourceScatterAdd Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterDiv Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterMax Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterMin Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterMul Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterNdAdd Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResourceScatterNdSub Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResourceScatterNdUpdate Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResourceScatterSub Tindices={int32,int64}
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64}
ResourceScatterUpdate Tindices={int32,int64}
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ResourceStridedSliceAssign Index={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Reverse T={bool,complex64,float,int32,int64}
ReverseSequence Tlen={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ReverseV2 T={bfloat16,bool,complex64,float,int32,int64}
Tidx={int32,int64}
RightShift T={int32,int64,uint32,uint64}
Rint T={bfloat16,float}
Round T={bfloat16,complex64,float,int32,int64}
Rsqrt T={bfloat16,complex64,float}
RsqrtGrad T={bfloat16,complex64,float}
ScatterNd Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Select T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Selu T={bfloat16,float}
SeluGrad T={bfloat16,float}
SendTPUEmbeddingGradients
Shape out_type={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
ShapeN out_type={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Sigmoid T={bfloat16,complex64,float}
SigmoidGrad T={bfloat16,complex64,float}
Sign T={bfloat16,complex64,float,int32,int64}
Sin T={bfloat16,complex64,float}
Sinh T={bfloat16,complex64,float}
Size out_type={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Slice Index={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Snapshot T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Softmax T={bfloat16,float}
SoftmaxCrossEntropyWithLogits T={bfloat16,float}
Softplus T={bfloat16,float}
SoftplusGrad T={bfloat16,float}
Softsign T={bfloat16,float}
SoftsignGrad T={bfloat16,float}
SpaceToBatch Tpaddings={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
SpaceToBatchND Tblock_shape={int32,int64}
Tpaddings={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
SpaceToDepth T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
SparseMatMul Tb={bfloat16,float}
Ta={bfloat16,float}
SparseSoftmaxCrossEntropyWithLogits Tlabels={int32,int64}
T={bfloat16,float}
SparseToDense Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Split T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
SplitV Tlen={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Sqrt T={bfloat16,complex64,float}
SqrtGrad T={bfloat16,complex64,float}
Square T={bfloat16,complex64,float,int32,int64}
SquaredDifference T={bfloat16,complex64,float,int32,int64}
Squeeze T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StackCloseV2
StackPopV2 elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StackPushV2 T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StackV2 elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StatelessIf Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
StatelessMultinomial output_dtype={int32,int64}
Tseed={int32}
T={bfloat16,float}
StatelessRandomNormal Tseed={int32}
T={int32,int64}
dtype={bfloat16,float}
StatelessRandomUniform Tseed={int32}
T={int32,int64}
dtype={bfloat16,float}
StatelessRandomUniformInt Tseed={int32}
T={int32,int64}
dtype={int32,int64}
StatelessTruncatedNormal Tseed={int32}
T={int32,int64}
dtype={bfloat16,float}
StatelessWhile T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
StopGradient T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StridedSlice Index={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
StridedSliceGrad Index={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Sub T={bfloat16,complex64,float,int32,int64}
Sum Tidx={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
SymbolicGradient Tout={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TPUEmbeddingActivations
Tan T={bfloat16,complex64,float,int32,int64}
Tanh T={bfloat16,complex64,float}
TanhGrad T={bfloat16,complex64,float}
TensorArrayCloseV3
TensorArrayConcatV3 dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArrayGatherV3 dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArrayGradV3
TensorArrayReadV3 dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArrayScatterV3 T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArraySizeV3
TensorArraySplitV3 T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArrayV3 dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorArrayWriteV3 T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorListElementShape shape_type={int32,int64}
TensorListPopBack element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorListPushBack element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TensorListReserve shape_type={int32,int64}
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Tile Tmultiples={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TopKV2 T={bfloat16,float,int32,uint32}
Transpose Tperm={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
TruncateDiv T={bfloat16,complex64,float,int32,int64}
TruncateMod T={bfloat16,float,int32,int64}
TruncatedNormal T={int32,int64}
dtype={float}
Unpack T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
UnsortedSegmentMax Tnumsegments={int32,int64}
Tindices={int32,int64}
T={bfloat16,float,int32,int64,uint32,uint64}
UnsortedSegmentMin Tnumsegments={int32,int64}
Tindices={int32,int64}
T={bfloat16,float,int32,int64,uint32,uint64}
UnsortedSegmentProd Tnumsegments={int32,int64}
Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
UnsortedSegmentSum Tnumsegments={int32,int64}
Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
VarIsInitializedOp
VariableShape out_type={int32,int64}
While T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Xdivy T={complex64,float}
XlaBroadcastHelper Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaConv Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaDequantize
XlaDot T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaDynamicSlice Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaDynamicUpdateSlice Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaHostCompute Toutputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Tinputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaIf Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
XlaKeyValueSort V={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
K={bfloat16,float,int32,int64,uint32,uint64}
XlaPad Tindices={int32,int64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaRecv dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaRecvFromHost Toutput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaReduce T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaReduceWindow Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaSelectAndScatter Tindices={int32,int64}
T={bfloat16,complex64,float,int32,int64,uint32,uint64}
XlaSend T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaSendToHost Tinput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaSort T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
XlaWhile T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
Xlogy T={complex64,float}
ZerosLike T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
_Arg T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}
_ArrayToList out_types={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
_ListToArray T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64}
_Retval T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64}