K-익명성은 레코드의 재식별성을 나타내는 데이터 세트의 속성입니다. 데이터 세트에 있는 각 개인의 유사 식별자가 동일한 데이터 세트에 있는 최소 k – 1명의 다른 사람과 동일한 경우 해당 데이터 세트는 k-익명성을 가집니다. 이 샘플은 Cloud DLP를 사용하여 k-익명성 값을 계산하는 방법을 보여줍니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
C#
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.Action.Types;
using static Google.Cloud.Dlp.V2.PrivacyMetric.Types;
public class RiskAnalysisCreateKAnonymity
{
public static AnalyzeDataSourceRiskDetails.Types.KAnonymityResult KAnonymity(
string callingProjectId,
string tableProjectId,
string datasetId,
string tableId,
string topicId,
string subscriptionId,
IEnumerable<FieldId> quasiIds)
{
var dlp = DlpServiceClient.Create();
// Construct + submit the job
var KAnonymityConfig = new KAnonymityConfig
{
QuasiIds = { quasiIds }
};
var config = new RiskAnalysisJobConfig
{
PrivacyMetric = new PrivacyMetric
{
KAnonymityConfig = KAnonymityConfig
},
SourceTable = new BigQueryTable
{
ProjectId = tableProjectId,
DatasetId = datasetId,
TableId = tableId
},
Actions =
{
new Google.Cloud.Dlp.V2.Action
{
PubSub = new PublishToPubSub
{
Topic = $"projects/{callingProjectId}/topics/{topicId}"
}
}
}
};
var submittedJob = dlp.CreateDlpJob(
new CreateDlpJobRequest
{
ParentAsProjectName = new ProjectName(callingProjectId),
RiskJob = config
});
// Listen to pub/sub for the job
var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
var subscriber = SubscriberClient.CreateAsync(
subscriptionName).Result;
// SimpleSubscriber runs your message handle function on multiple
// threads to maximize throughput.
var done = new ManualResetEventSlim(false);
subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
{
if (message.Attributes["DlpJobName"] == submittedJob.Name)
{
Thread.Sleep(500); // Wait for DLP API results to become consistent
done.Set();
return Task.FromResult(SubscriberClient.Reply.Ack);
}
else
{
return Task.FromResult(SubscriberClient.Reply.Nack);
}
});
done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
subscriber.StopAsync(CancellationToken.None).Wait();
// Process results
var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
{
DlpJobName = DlpJobName.Parse(submittedJob.Name)
});
var result = resultJob.RiskDetails.KAnonymityResult;
for (var bucketIdx = 0; bucketIdx < result.EquivalenceClassHistogramBuckets.Count; bucketIdx++)
{
var bucket = result.EquivalenceClassHistogramBuckets[bucketIdx];
Console.WriteLine($"Bucket {bucketIdx}");
Console.WriteLine($" Bucket size range: [{bucket.EquivalenceClassSizeLowerBound}, {bucket.EquivalenceClassSizeUpperBound}].");
Console.WriteLine($" {bucket.BucketSize} unique value(s) total.");
foreach (var bucketValue in bucket.BucketValues)
{
// 'UnpackValue(x)' is a prettier version of 'x.toString()'
Console.WriteLine($" Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]");
Console.WriteLine($" Class size: {bucketValue.EquivalenceClassSize}");
}
}
return result;
}
public static string UnpackValue(Value protoValue)
{
var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString());
return jsonValue.Values.ElementAt(0).ToString();
}
}
Go
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import (
"context"
"fmt"
"io"
"strings"
"time"
dlp "cloud.google.com/go/dlp/apiv2"
"cloud.google.com/go/dlp/apiv2/dlppb"
"cloud.google.com/go/pubsub"
)
// riskKAnonymity computes the risk of the given columns using K Anonymity.
func riskKAnonymity(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID string, columnNames ...string) error {
// projectID := "my-project-id"
// dataProject := "bigquery-public-data"
// pubSubTopic := "dlp-risk-sample-topic"
// pubSubSub := "dlp-risk-sample-sub"
// datasetID := "nhtsa_traffic_fatalities"
// tableID := "accident_2015"
// columnNames := "state_number" "county"
ctx := context.Background()
client, err := dlp.NewClient(ctx)
if err != nil {
return fmt.Errorf("dlp.NewClient: %w", err)
}
// Create a PubSub Client used to listen for when the inspect job finishes.
pubsubClient, err := pubsub.NewClient(ctx, projectID)
if err != nil {
return err
}
defer pubsubClient.Close()
// Create a PubSub subscription we can use to listen for messages.
// Create the Topic if it doesn't exist.
t := pubsubClient.Topic(pubSubTopic)
topicExists, err := t.Exists(ctx)
if err != nil {
return err
}
if !topicExists {
if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
return err
}
}
// Create the Subscription if it doesn't exist.
s := pubsubClient.Subscription(pubSubSub)
subExists, err := s.Exists(ctx)
if err != nil {
return err
}
if !subExists {
if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
return err
}
}
// topic is the PubSub topic string where messages should be sent.
topic := "projects/" + projectID + "/topics/" + pubSubTopic
// Build the QuasiID slice.
var q []*dlppb.FieldId
for _, c := range columnNames {
q = append(q, &dlppb.FieldId{Name: c})
}
// Create a configured request.
req := &dlppb.CreateDlpJobRequest{
Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
Job: &dlppb.CreateDlpJobRequest_RiskJob{
RiskJob: &dlppb.RiskAnalysisJobConfig{
// PrivacyMetric configures what to compute.
PrivacyMetric: &dlppb.PrivacyMetric{
Type: &dlppb.PrivacyMetric_KAnonymityConfig_{
KAnonymityConfig: &dlppb.PrivacyMetric_KAnonymityConfig{
QuasiIds: q,
},
},
},
// SourceTable describes where to find the data.
SourceTable: &dlppb.BigQueryTable{
ProjectId: dataProject,
DatasetId: datasetID,
TableId: tableID,
},
// Send a message to PubSub using Actions.
Actions: []*dlppb.Action{
{
Action: &dlppb.Action_PubSub{
PubSub: &dlppb.Action_PublishToPubSub{
Topic: topic,
},
},
},
},
},
},
}
// Create the risk job.
j, err := client.CreateDlpJob(ctx, req)
if err != nil {
return fmt.Errorf("CreateDlpJob: %w", err)
}
fmt.Fprintf(w, "Created job: %v\n", j.GetName())
// Wait for the risk job to finish by waiting for a PubSub message.
// This only waits for 10 minutes. For long jobs, consider using a truly
// asynchronous execution model such as Cloud Functions.
ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
defer cancel()
err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
// If this is the wrong job, do not process the result.
if msg.Attributes["DlpJobName"] != j.GetName() {
msg.Nack()
return
}
msg.Ack()
time.Sleep(500 * time.Millisecond)
j, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
Name: j.GetName(),
})
if err != nil {
fmt.Fprintf(w, "GetDlpJob: %v", err)
return
}
h := j.GetRiskDetails().GetKAnonymityResult().GetEquivalenceClassHistogramBuckets()
for i, b := range h {
fmt.Fprintf(w, "Histogram bucket %v\n", i)
fmt.Fprintf(w, " Size range: [%v,%v]\n", b.GetEquivalenceClassSizeLowerBound(), b.GetEquivalenceClassSizeUpperBound())
fmt.Fprintf(w, " %v unique values total\n", b.GetBucketSize())
for _, v := range b.GetBucketValues() {
var qvs []string
for _, qv := range v.GetQuasiIdsValues() {
qvs = append(qvs, qv.String())
}
fmt.Fprintf(w, " QuasiID values: %s\n", strings.Join(qvs, ", "))
fmt.Fprintf(w, " Class size: %v\n", v.GetEquivalenceClassSize())
}
}
// Stop listening for more messages.
cancel()
})
if err != nil {
return fmt.Errorf("Receive: %w", err)
}
return nil
}
Java
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.PublishToPubSub;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.KAnonymityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
class RiskAnalysisKAnonymity {
public static void main(String[] args) throws Exception {
// TODO(developer): Replace these variables before running the sample.
String projectId = "your-project-id";
String datasetId = "your-bigquery-dataset-id";
String tableId = "your-bigquery-table-id";
String topicId = "pub-sub-topic";
String subscriptionId = "pub-sub-subscription";
calculateKAnonymity(projectId, datasetId, tableId, topicId, subscriptionId);
}
public static void calculateKAnonymity(
String projectId, String datasetId, String tableId, String topicId, String subscriptionId)
throws ExecutionException, InterruptedException, IOException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {
// Specify the BigQuery table to analyze
BigQueryTable bigQueryTable =
BigQueryTable.newBuilder()
.setProjectId(projectId)
.setDatasetId(datasetId)
.setTableId(tableId)
.build();
// These values represent the column names of quasi-identifiers to analyze
List<String> quasiIds = Arrays.asList("Age", "Mystery");
// Configure the privacy metric for the job
List<FieldId> quasiIdFields =
quasiIds.stream()
.map(columnName -> FieldId.newBuilder().setName(columnName).build())
.collect(Collectors.toList());
KAnonymityConfig kanonymityConfig =
KAnonymityConfig.newBuilder().addAllQuasiIds(quasiIdFields).build();
PrivacyMetric privacyMetric =
PrivacyMetric.newBuilder().setKAnonymityConfig(kanonymityConfig).build();
// Create action to publish job status notifications over Google Cloud Pub/Sub
ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);
PublishToPubSub publishToPubSub =
PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();
Action action = Action.newBuilder().setPubSub(publishToPubSub).build();
// Configure the risk analysis job to perform
RiskAnalysisJobConfig riskAnalysisJobConfig =
RiskAnalysisJobConfig.newBuilder()
.setSourceTable(bigQueryTable)
.setPrivacyMetric(privacyMetric)
.addActions(action)
.build();
// Build the request to be sent by the client
CreateDlpJobRequest createDlpJobRequest =
CreateDlpJobRequest.newBuilder()
.setParent(LocationName.of(projectId, "global").toString())
.setRiskJob(riskAnalysisJobConfig)
.build();
// Send the request to the API using the client
DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);
// Set up a Pub/Sub subscriber to listen on the job completion status
final SettableApiFuture<Boolean> done = SettableApiFuture.create();
ProjectSubscriptionName subscriptionName =
ProjectSubscriptionName.of(projectId, subscriptionId);
MessageReceiver messageHandler =
(PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
};
Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
subscriber.startAsync();
// Wait for job completion semi-synchronously
// For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
try {
done.get(15, TimeUnit.MINUTES);
} catch (TimeoutException e) {
System.out.println("Job was not completed after 15 minutes.");
return;
} finally {
subscriber.stopAsync();
subscriber.awaitTerminated();
}
// Build a request to get the completed job
GetDlpJobRequest getDlpJobRequest =
GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
// Retrieve completed job status
DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
System.out.println("Job status: " + completedJob.getState());
System.out.println("Job name: " + dlpJob.getName());
// Get the result and parse through and process the information
KAnonymityResult kanonymityResult = completedJob.getRiskDetails().getKAnonymityResult();
List<KAnonymityHistogramBucket> histogramBucketList =
kanonymityResult.getEquivalenceClassHistogramBucketsList();
for (KAnonymityHistogramBucket result : histogramBucketList) {
System.out.printf(
"Bucket size range: [%d, %d]\n",
result.getEquivalenceClassSizeLowerBound(), result.getEquivalenceClassSizeUpperBound());
for (KAnonymityEquivalenceClass bucket : result.getBucketValuesList()) {
List<String> quasiIdValues =
bucket.getQuasiIdsValuesList().stream()
.map(Value::toString)
.collect(Collectors.toList());
System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());
}
}
}
}
// handleMessage injects the job and settableFuture into the message reciever interface
private static void handleMessage(
DlpJob job,
SettableApiFuture<Boolean> done,
PubsubMessage pubsubMessage,
AckReplyConsumer ackReplyConsumer) {
String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
if (job.getName().equals(messageAttribute)) {
done.set(true);
ackReplyConsumer.ack();
} else {
ackReplyConsumer.nack();
}
}
}
Node.js
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');
// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();
// The project ID to run the API call under
// const projectId = 'my-project';
// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = 'my-project';
// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';
// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';
// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'
// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'
// A set of columns that form a composite key ('quasi-identifiers')
// const quasiIds = [{ name: 'age' }, { name: 'city' }];
async function kAnonymityAnalysis() {
const sourceTable = {
projectId: tableProjectId,
datasetId: datasetId,
tableId: tableId,
};
// Construct request for creating a risk analysis job
const request = {
parent: `projects/${projectId}/locations/global`,
riskJob: {
privacyMetric: {
kAnonymityConfig: {
quasiIds: quasiIds,
},
},
sourceTable: sourceTable,
actions: [
{
pubSub: {
topic: `projects/${projectId}/topics/${topicId}`,
},
},
],
},
};
// Create helper function for unpacking values
const getValue = obj => obj[Object.keys(obj)[0]];
// Run risk analysis job
const [topicResponse] = await pubsub.topic(topicId).get();
const subscription = await topicResponse.subscription(subscriptionId);
const [jobsResponse] = await dlp.createDlpJob(request);
const jobName = jobsResponse.name;
console.log(`Job created. Job name: ${jobName}`);
// Watch the Pub/Sub topic until the DLP job finishes
await new Promise((resolve, reject) => {
const messageHandler = message => {
if (message.attributes && message.attributes.DlpJobName === jobName) {
message.ack();
subscription.removeListener('message', messageHandler);
subscription.removeListener('error', errorHandler);
resolve(jobName);
} else {
message.nack();
}
};
const errorHandler = err => {
subscription.removeListener('message', messageHandler);
subscription.removeListener('error', errorHandler);
reject(err);
};
subscription.on('message', messageHandler);
subscription.on('error', errorHandler);
});
setTimeout(() => {
console.log(' Waiting for DLP job to fully complete');
}, 500);
const [job] = await dlp.getDlpJob({name: jobName});
const histogramBuckets =
job.riskDetails.kAnonymityResult.equivalenceClassHistogramBuckets;
histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
console.log(`Bucket ${histogramBucketIdx}:`);
console.log(
` Bucket size range: [${histogramBucket.equivalenceClassSizeLowerBound}, ${histogramBucket.equivalenceClassSizeUpperBound}]`
);
histogramBucket.bucketValues.forEach(valueBucket => {
const quasiIdValues = valueBucket.quasiIdsValues
.map(getValue)
.join(', ');
console.log(` Quasi-ID values: {${quasiIdValues}}`);
console.log(` Class size: ${valueBucket.equivalenceClassSize}`);
});
});
}
await kAnonymityAnalysis();
PHP
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\PrivacyMetric\KAnonymityConfig;
use Google\Cloud\PubSub\PubSubClient;
/**
* Computes the k-anonymity of a column set in a Google BigQuery table.
*
* @param string $callingProjectId The project ID to run the API call under
* @param string $dataProjectId The project ID containing the target Datastore
* @param string $topicId The name of the Pub/Sub topic to notify once the job completes
* @param string $subscriptionId The name of the Pub/Sub subscription to use when listening for job
* @param string $datasetId The ID of the dataset to inspect
* @param string $tableId The ID of the table to inspect
* @param string[] $quasiIdNames Array columns that form a composite key (quasi-identifiers)
*/
function k_anonymity(
string $callingProjectId,
string $dataProjectId,
string $topicId,
string $subscriptionId,
string $datasetId,
string $tableId,
array $quasiIdNames
): void {
// Instantiate a client.
$dlp = new DlpServiceClient();
$pubsub = new PubSubClient();
$topic = $pubsub->topic($topicId);
// Construct risk analysis config
$quasiIds = array_map(
function ($id) {
return (new FieldId())->setName($id);
},
$quasiIdNames
);
$statsConfig = (new KAnonymityConfig())
->setQuasiIds($quasiIds);
$privacyMetric = (new PrivacyMetric())
->setKAnonymityConfig($statsConfig);
// Construct items to be analyzed
$bigqueryTable = (new BigQueryTable())
->setProjectId($dataProjectId)
->setDatasetId($datasetId)
->setTableId($tableId);
// Construct the action to run when job completes
$pubSubAction = (new PublishToPubSub())
->setTopic($topic->name());
$action = (new Action())
->setPubSub($pubSubAction);
// Construct risk analysis job config to run
$riskJob = (new RiskAnalysisJobConfig())
->setPrivacyMetric($privacyMetric)
->setSourceTable($bigqueryTable)
->setActions([$action]);
// Listen for job notifications via an existing topic/subscription.
$subscription = $topic->subscription($subscriptionId);
// Submit request
$parent = "projects/$callingProjectId/locations/global";
$createDlpJobRequest = (new CreateDlpJobRequest())
->setParent($parent)
->setRiskJob($riskJob);
$job = $dlp->createDlpJob($createDlpJobRequest);
// Poll Pub/Sub using exponential backoff until job finishes
// Consider using an asynchronous execution model such as Cloud Functions
$attempt = 1;
$startTime = time();
do {
foreach ($subscription->pull() as $message) {
if (
isset($message->attributes()['DlpJobName']) &&
$message->attributes()['DlpJobName'] === $job->getName()
) {
$subscription->acknowledge($message);
// Get the updated job. Loop to avoid race condition with DLP API.
do {
$getDlpJobRequest = (new GetDlpJobRequest())
->setName($job->getName());
$job = $dlp->getDlpJob($getDlpJobRequest);
} while ($job->getState() == JobState::RUNNING);
break 2; // break from parent do while
}
}
print('Waiting for job to complete' . PHP_EOL);
// Exponential backoff with max delay of 60 seconds
sleep(min(60, pow(2, ++$attempt)));
} while (time() - $startTime < 600); // 10 minute timeout
// Print finding counts
printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
switch ($job->getState()) {
case JobState::DONE:
$histBuckets = $job->getRiskDetails()->getKAnonymityResult()->getEquivalenceClassHistogramBuckets();
foreach ($histBuckets as $bucketIndex => $histBucket) {
// Print bucket stats
printf('Bucket %s:' . PHP_EOL, $bucketIndex);
printf(
' Bucket size range: [%s, %s]' . PHP_EOL,
$histBucket->getEquivalenceClassSizeLowerBound(),
$histBucket->getEquivalenceClassSizeUpperBound()
);
// Print bucket values
foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
// Pretty-print quasi-ID values
print(' Quasi-ID values:' . PHP_EOL);
foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
print(' ' . $value->serializeToJsonString() . PHP_EOL);
}
printf(
' Class size: %s' . PHP_EOL,
$valueBucket->getEquivalenceClassSize()
);
}
}
break;
case JobState::FAILED:
printf('Job %s had errors:' . PHP_EOL, $job->getName());
$errors = $job->getErrors();
foreach ($errors as $error) {
var_dump($error->getDetails());
}
break;
case JobState::PENDING:
print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
break;
default:
print('Unexpected job state. Most likely, the job is either running or has not yet started.');
}
}
Python
민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.
Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import concurrent.futures
from typing import List
import google.cloud.dlp
from google.cloud.dlp_v2 import types
import google.cloud.pubsub
def k_anonymity_analysis(
project: str,
table_project_id: str,
dataset_id: str,
table_id: str,
topic_id: str,
subscription_id: str,
quasi_ids: List[str],
timeout: int = 300,
) -> None:
"""Uses the Data Loss Prevention API to compute the k-anonymity of a
column set in a Google BigQuery table.
Args:
project: The Google Cloud project id to use as a parent resource.
table_project_id: The Google Cloud project id where the BigQuery table
is stored.
dataset_id: The id of the dataset to inspect.
table_id: The id of the table to inspect.
topic_id: The name of the Pub/Sub topic to notify once the job
completes.
subscription_id: The name of the Pub/Sub subscription to use when
listening for job completion notifications.
quasi_ids: A set of columns that form a composite key.
timeout: The number of seconds to wait for a response from the API.
Returns:
None; the response from the API is printed to the terminal.
"""
# Create helper function for unpacking values
def get_values(obj: types.Value) -> int:
return int(obj.integer_value)
# Instantiate a client.
dlp = google.cloud.dlp_v2.DlpServiceClient()
# Convert the project id into a full resource id.
topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
parent = f"projects/{project}/locations/global"
# Location info of the BigQuery table.
source_table = {
"project_id": table_project_id,
"dataset_id": dataset_id,
"table_id": table_id,
}
# Convert quasi id list to Protobuf type
def map_fields(field: str) -> dict:
return {"name": field}
quasi_ids = map(map_fields, quasi_ids)
# Tell the API where to send a notification when the job is complete.
actions = [{"pub_sub": {"topic": topic}}]
# Configure risk analysis job
# Give the name of the numeric column to compute risk metrics for
risk_job = {
"privacy_metric": {"k_anonymity_config": {"quasi_ids": quasi_ids}},
"source_table": source_table,
"actions": actions,
}
# Call API to start risk analysis job
operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job})
def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
if message.attributes["DlpJobName"] == operation.name:
# This is the message we're looking for, so acknowledge it.
message.ack()
# Now that the job is done, fetch the results and print them.
job = dlp.get_dlp_job(request={"name": operation.name})
print(f"Job name: {job.name}")
histogram_buckets = (
job.risk_details.k_anonymity_result.equivalence_class_histogram_buckets
)
# Print bucket stats
for i, bucket in enumerate(histogram_buckets):
print(f"Bucket {i}:")
if bucket.equivalence_class_size_lower_bound:
print(
" Bucket size range: [{}, {}]".format(
bucket.equivalence_class_size_lower_bound,
bucket.equivalence_class_size_upper_bound,
)
)
for value_bucket in bucket.bucket_values:
print(
" Quasi-ID values: {}".format(
map(get_values, value_bucket.quasi_ids_values)
)
)
print(
" Class size: {}".format(
value_bucket.equivalence_class_size
)
)
subscription.set_result(None)
else:
# This is not the message we're looking for.
message.drop()
# Create a Pub/Sub client and find the subscription. The subscription is
# expected to already be listening to the topic.
subscriber = google.cloud.pubsub.SubscriberClient()
subscription_path = subscriber.subscription_path(project, subscription_id)
subscription = subscriber.subscribe(subscription_path, callback)
try:
subscription.result(timeout=timeout)
except concurrent.futures.TimeoutError:
print(
"No event received before the timeout. Please verify that the "
"subscription provided is subscribed to the topic provided."
)
subscription.close()
다음 단계
다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.