Crear y programar tareas de inspección de Protección de Datos Sensibles

En este tema se describe en detalle cómo crear una tarea de inspección de Protección de Datos Sensibles y cómo programar tareas de inspección periódicas creando un activador de tareas. Para ver una guía rápida sobre cómo crear un nuevo activador de tareas con la interfaz de usuario de Protección de Datos Sensibles, consulta Guía de inicio rápido: crear un activador de tareas de Protección de Datos Sensibles.

Acerca de las tareas de inspección y los activadores de tareas

Cuando Protección de Datos Sensibles realiza un análisis de inspección para identificar datos sensibles, cada análisis se ejecuta como un trabajo. Protección de Datos Sensibles crea y ejecuta un recurso de trabajo cada vez que le indica que inspeccione sus Google Cloud repositorios de almacenamiento, incluidos los contenedores de Cloud Storage, las tablas de BigQuery, los tipos de Datastore y los datos externos.

Para programar tareas de análisis de inspección de Protección de Datos Sensibles, crea activadores de tareas. Un activador de tareas automatiza la creación de tareas de Protección de Datos Sensibles de forma periódica y también se puede ejecutar bajo demanda.

Para obtener más información sobre las tareas y los activadores de tareas en Protección de Datos Sensibles, consulta la página conceptual Tareas y activadores de tareas.

Crear una tarea de inspección

Para crear una tarea de inspección de Protección de Datos Sensibles, sigue estos pasos:

Consola

En la sección Protección de Datos Sensibles de la Google Cloud consola, ve a la página Crear tarea o activador de tarea.

Ir a Crear tarea o activador de tareas

La página Crear tarea o activador de tareas contiene las siguientes secciones:

Elegir datos de entrada

Nombre

Asigna un nombre al trabajo. Puedes usar letras, números y guiones. Ponerle un nombre a tu trabajo es opcional. Si no introduces ningún nombre, Protección de Datos Sensibles asignará a la tarea un identificador numérico único.

Ubicación

En el menú Tipo de almacenamiento, elija el tipo de repositorio que almacena los datos que quiere analizar:

  • Cloud Storage: introduce la URL del bucket que quieras analizar o elige Incluir/excluir en el menú Tipo de ubicación y, a continuación, haz clic en Buscar para ir al bucket o a la subcarpeta que quieras analizar. Selecciona la casilla Analizar carpeta de forma recursiva para analizar el directorio especificado y todos los directorios que contenga. Déjala sin seleccionar para analizar solo el directorio especificado y no profundizar más.
  • BigQuery: introduce los identificadores del proyecto, el conjunto de datos y la tabla que quieras analizar.
  • Datastore: introduce los identificadores del proyecto, el espacio de nombres (opcional) y el tipo que quieras analizar.
  • Híbrido: puedes añadir etiquetas obligatorias, etiquetas opcionales y opciones para gestionar datos tabulares. Para obtener más información, consulta Tipos de metadatos que puedes proporcionar.

Muestreo

El muestreo es una forma opcional de ahorrar recursos si tienes un volumen de datos muy grande.

En Muestreo, puede elegir si quiere analizar todos los datos seleccionados o tomar una muestra de los datos analizando un porcentaje determinado. El muestreo funciona de forma diferente en función del tipo de repositorio de almacenamiento que estés analizando:

  • En BigQuery, puedes tomar una muestra de un subconjunto del total de filas seleccionadas, que se corresponderá con el porcentaje de archivos que especifiques para incluir en el análisis.
  • En Cloud Storage, si algún archivo supera el tamaño especificado en Tamaño máximo en bytes que se puede analizar por archivo, Protección de Datos Sensibles lo analiza hasta ese tamaño máximo y, a continuación, pasa al siguiente archivo.

Para activar el muestreo, elige una de las siguientes opciones en el primer menú:

  • Iniciar el muestreo desde el principio: Protección de Datos Sensibles empieza el análisis parcial al principio de los datos. En BigQuery, esto inicia el análisis en la primera fila. En Cloud Storage, se inicia el análisis al principio de cada archivo y se detiene cuando Sensitive Data Protection ha analizado hasta el tamaño máximo de archivo especificado.
  • Iniciar el muestreo desde un punto aleatorio: Protección de Datos Sensibles empieza el análisis parcial en una ubicación aleatoria de los datos. En BigQuery, se inicia el análisis en una fila aleatoria. En Cloud Storage, este ajuste solo se aplica a los archivos que superen el tamaño máximo especificado. Protección de Datos Sensibles analiza los archivos que no superan el tamaño máximo en su totalidad y los que superan el tamaño máximo hasta alcanzarlo.

Para realizar un análisis parcial, también debe elegir el porcentaje de datos que quiere analizar. Usa el control deslizante para definir el porcentaje.

También puedes acotar los archivos o registros que quieres analizar por fecha. Para saber cómo hacerlo, consulta la sección Programar, que aparece más adelante en este artículo.

Configuración avanzada

Cuando creas un trabajo para analizar los buckets de Cloud Storage o las tablas de BigQuery, puedes acotar la búsqueda especificando una configuración avanzada. En concreto, puedes configurar lo siguiente:

  • Archivos (solo Cloud Storage): los tipos de archivo que se van a analizar, incluidos los archivos de texto, binarios y de imagen.
  • Campos de identificación (solo en BigQuery): identificadores de fila únicos en la tabla.
  • En Cloud Storage, si algún archivo supera el tamaño especificado en Tamaño máximo en bytes que se puede analizar por archivo, Protección de Datos Sensibles lo analiza hasta ese tamaño máximo y, a continuación, pasa al siguiente archivo.

Para activar el muestreo, elija el porcentaje de datos que quiera analizar. Usa el control deslizante para definir el porcentaje. A continuación, elige una de las siguientes opciones del primer menú:

  • Iniciar el muestreo desde el principio: Protección de Datos Sensibles empieza el análisis parcial al principio de los datos. En BigQuery, esto inicia el análisis en la primera fila. En Cloud Storage, el análisis empieza al principio de cada archivo y se detiene cuando Protección de Datos Sensibles ha analizado hasta el tamaño máximo de archivo especificado (consulta la información anterior).
  • Iniciar el muestreo desde un punto aleatorio: Protección de Datos Sensibles empieza el análisis parcial en una ubicación aleatoria de los datos. En BigQuery, se inicia el análisis en una fila aleatoria. En Cloud Storage, este ajuste solo se aplica a los archivos que superen el tamaño máximo especificado. Protección de Datos Sensibles analiza los archivos que no superan el tamaño máximo en su totalidad y los que superan el tamaño máximo hasta alcanzarlo.
Archivos

En el caso de los archivos almacenados en Cloud Storage, puede especificar los tipos que quiere incluir en el análisis en Archivos.

Puedes elegir entre archivos binarios, de texto, de imagen, CSV, TSV, de Microsoft Word, de Microsoft Excel, de Microsoft PowerPoint, PDF y de Apache Avro. Para ver una lista completa de las extensiones de archivo que Protección de Datos Sensibles puede analizar en los segmentos de Cloud Storage, consulta FileType. Si eliges Binario, Protección de Datos Sensibles analizará los archivos de tipos no reconocidos.

Campos identificativos

En el caso de las tablas de BigQuery, en el campo Campos de identificación, puede indicar a Protección de Datos Sensibles que incluya los valores de las columnas de clave principal de la tabla en los resultados. De esta forma, puede vincular los hallazgos a las filas de la tabla que los contienen.

Introduzca los nombres de las columnas que identifican de forma única cada fila de la tabla. Si es necesario, usa la notación de punto para especificar campos anidados. Puedes añadir todos los campos que quieras.

También debe activar la acción Guardar en BigQuery para exportar las detecciones a BigQuery. Cuando los resultados se exportan a BigQuery, cada uno de ellos contiene los valores respectivos de los campos de identificación. Para obtener más información, consulta identifyingFields.

Configurar detección

En la sección Configurar detección, especifica los tipos de datos sensibles que quieres buscar. Completar esta sección es opcional. Si omite esta sección, Protección de Datos Sensibles analizará sus datos en busca de un conjunto predeterminado de infoTypes.

Template

También puede usar una plantilla de Protección de Datos Sensibles para reutilizar la información de configuración que haya especificado anteriormente.

Si ya has creado una plantilla que quieres usar, haz clic en el campo Nombre de la plantilla para ver una lista de plantillas de inspección. Elige o escribe el nombre de la plantilla que quieras usar.

Para obtener más información sobre cómo crear plantillas, consulta el artículo Crear plantillas de inspección de Protección de Datos Sensibles.

InfoTypes

Los detectores de infoType buscan datos sensibles de un tipo concreto. Por ejemplo, el detector de infoTypes integrado de Protección de Datos Sensibles US_SOCIAL_SECURITY_NUMBER busca números de la seguridad social de EE. UU. Además de los detectores de infoType integrados, puede crear sus propios detectores de infoType personalizados.

En InfoTypes, elige el detector de infoType que corresponda al tipo de datos que quieras buscar. No te recomendamos que dejes esta sección en blanco. Si lo haces, Protección de Datos Sensibles analizará tus datos con un conjunto predeterminado de infoTypes, que puede incluir infoTypes que no necesites. Para obtener más información sobre cada detector, consulta la referencia del detector de infoType.

Para obtener más información sobre cómo gestionar los infoTypes integrados y personalizados en esta sección, consulta Gestionar infoTypes a través de la consola de Google Cloud .

Conjuntos de reglas de inspección
Umbral de confianza

Cada vez que Protección de Datos Sensibles detecta una posible coincidencia de datos sensibles, le asigna un valor de probabilidad en una escala que va de "Muy improbable" a "Muy probable". Cuando asignas un valor de probabilidad aquí, indicas a Protección de Datos Sensibles que solo busque coincidencias en los datos que correspondan a ese valor de probabilidad o a uno superior.

El valor predeterminado "Posible" es suficiente para la mayoría de los propósitos. Si sueles obtener resultados demasiado genéricos, mueve el control deslizante hacia arriba. Si obtienes demasiados pocos resultados, mueve el control deslizante hacia abajo.

Cuando hayas terminado, haz clic en Continuar.

Añadir acciones

En Añadir acciones, selecciona una o varias acciones que la protección de datos sensibles debe llevar a cabo una vez completado el trabajo. Para obtener más información, consulta el artículo Habilitar las acciones de inspección o análisis de riesgos.

Después de seleccionar las acciones, haga clic en Continuar.

Revisar

La sección Revisar contiene un resumen en formato JSON de los ajustes del trabajo que acabas de especificar.

Haz clic en Crear para crear el trabajo (si no has especificado una programación) y para ejecutarlo una vez. Aparecerá la página de información del trabajo, que contiene el estado y otra información. Si el trabajo se está ejecutando, puedes hacer clic en el botón Cancelar para detenerlo. También puedes eliminar el trabajo haciendo clic en Eliminar.

Para volver a la página principal Protección de datos sensibles, haz clic en la flecha Atrás de la consola Google Cloud .

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using System;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.StorageConfig.Types;

public class JobsCreate
{
    public static DlpJob CreateJob(string projectId, string gcsPath)
    {
        var dlp = DlpServiceClient.Create();

        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet()
                {
                    Url = gcsPath
                }
            },
            TimespanConfig = new TimespanConfig
            {
                EnableAutoPopulationOfTimespanConfig = true
            }
        };

        var inspectConfig = new InspectConfig
        {
            InfoTypes = { new[] { "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER" }.Select(it => new InfoType() { Name = it }) },
            IncludeQuote = true,
            MinLikelihood = Likelihood.Unlikely,
            Limits = new InspectConfig.Types.FindingLimits() { MaxFindingsPerItem = 100 }
        };

        var response = dlp.CreateDlpJob(new CreateDlpJobRequest
        {
            Parent = new LocationName(projectId, "global").ToString(),
            InspectJob = new InspectJobConfig
            {
                InspectConfig = inspectConfig,
                StorageConfig = storageConfig,
            }
        });

        Console.WriteLine($"Job: {response.Name} status: {response.State}");

        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// createJob creates an inspection job
func createJob(w io.Writer, projectID, gcsPath string, infoTypeNames []string) error {
	// projectID := "my-project-id"
	// gcsPath := "gs://" + "your-bucket-name" + "path/to/file.txt";
	// infoTypeNames := []string{"EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER"}

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: &dlppb.CloudStorageOptions{
				FileSet: &dlppb.CloudStorageOptions_FileSet{
					Url: gcsPath,
				},
			},
		},

		// Set autoPopulateTimespan to true to scan only new content.
		TimespanConfig: &dlppb.StorageConfig_TimespanConfig{
			EnableAutoPopulationOfTimespanConfig: true,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types.
	var infoTypes []*dlppb.InfoType
	for _, c := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: c})
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:    infoTypes,
		IncludeQuote: true,

		// The minimum likelihood required before returning a match:
		// See: https://cloud.google.com/dlp/docs/likelihood
		MinLikelihood: dlppb.Likelihood_UNLIKELY,

		// The maximum number of findings to report (0 = server maximum)
		Limits: &dlppb.InspectConfig_FindingLimits{
			MaxFindingsPerItem: 100,
		},
	}

	// Create and send the request.
	req := dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				InspectConfig: inspectConfig,
				StorageConfig: storageConfig,
			},
		},
	}

	// Send the request.
	response, err := client.CreateDlpJob(ctx, &req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Created a Dlp Job %v and Status is: %v", response.Name, response.State)
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.privacy.dlp.v2.StorageConfig.TimespanConfig;
import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class JobsCreate {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createJobs(projectId, gcsPath);
  }

  // Creates a DLP Job
  public static void createJobs(String projectId, String gcsPath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Set autoPopulateTimespan to true to scan only new content
      boolean autoPopulateTimespan = true;
      TimespanConfig timespanConfig =
          TimespanConfig.newBuilder()
              .setEnableAutoPopulationOfTimespanConfig(autoPopulateTimespan)
              .build();

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();
      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .setTimespanConfig(timespanConfig)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());
      // The minimum likelihood required before returning a match:
      // See: https://cloud.google.com/dlp/docs/likelihood
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob createdDlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);
      System.out.println("Job created successfully: " + createdDlpJob.getName());
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Initialize google DLP Client
const dlp = new DLP.DlpServiceClient();

async function jobsCreate() {
  // Construct cloud storage configuration
  const cloudStorageConfig = {
    cloudStorageOptions: {
      fileSet: {
        url: cloudFileUrl,
      },
    },
    timespanConfig: {
      enableAutoPopulationOfTimespanConfig: true,
    },
  };

  // Construct inspect job configuration
  const inspectJob = {
    storageConfig: cloudStorageConfig,
  };

  // Construct inspect configuration
  const inspectConfig = {
    infoTypes: [
      {name: 'EMAIL_ADDRESS'},
      {name: 'PERSON_NAME'},
      {name: 'LOCATION'},
      {name: 'PHONE_NUMBER'},
    ],
    includeQuote: true,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.LIKELY,
    excludeInfoTypes: false,
  };

  // Combine configurations into a request for the service.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJob,
    inspectConfig: inspectConfig,
  };

  // Send the request and receive response from the service
  const [response] = await dlp.createDlpJob(request);
  // Print the results
  console.log(`Job created successfully: ${response.name}`);
}

jobsCreate();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\StorageConfig\TimespanConfig;

/**
 * Creates an inspection job with the Cloud Data Loss Prevention API.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsPath           GCS file to be inspected. Example : gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv
 */
function create_job(
    string $callingProjectId,
    string $gcsPath
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Set autoPopulateTimespan to true to scan only new content.
    $timespanConfig = (new TimespanConfig())
        ->setEnableAutoPopulationOfTimespanConfig(true);

    // Specify the GCS file to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsPath));
    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions(($cloudStorageOptions))
        ->setTimespanConfig($timespanConfig);

    // ----- Construct inspection config -----
    $emailAddressInfoType = (new InfoType())
        ->setName('EMAIL_ADDRESS');
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $locationInfoType = (new InfoType())
        ->setName('LOCATION');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$emailAddressInfoType, $personNameInfoType, $locationInfoType, $phoneNumberInfoType];

    // Whether to include the matching string in the response.
    $includeQuote = true;
    // The minimum likelihood required before returning a match.
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // The maximum number of findings to report (0 = server maximum).
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest(100);

    // Create the Inspect configuration object.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote($includeQuote);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Configure the inspection job we want the service to perform.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJobConfig);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Print results.
    printf($job->getName());
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import google.cloud.dlp


def create_dlp_job(
    project: str,
    bucket: str,
    info_types: list[str],
    job_id: str = None,
    max_findings: int = 100,
    auto_populate_timespan: bool = True,
) -> None:
    """Uses the Data Loss Prevention API to create a DLP job.
    Args:
        project: The project id to use as a parent resource.
        bucket: The name of the GCS bucket to scan. This sample scans all
            files in the bucket.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        job_id: The id of the job. If omitted, an id will be randomly generated.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        auto_populate_timespan: Automatically populates time span config start
            and end times in order to scan new content only.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {"file_set": {"url": url}},
        # Time-based configuration for each storage object.
        "timespan_config": {
            # Auto-populate start and end times in order to scan new objects
            # only.
            "enable_auto_population_of_timespan_config": auto_populate_timespan
        },
    }

    # Construct the job definition.
    job = {"inspect_config": inspect_config, "storage_config": storage_config}

    # Call the API.
    response = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": job, "job_id": job_id}
    )

    # Print out the result.
    print(f"Job : {response.name} status: {response.state}")

REST

En la API DLP, los trabajos se representan mediante el recurso DlpJobs. Para crear un trabajo, puedes usar el método projects.dlpJobs.create del recurso DlpJob.

Este JSON de ejemplo se puede enviar en una solicitud POST al endpoint REST de Protección de Datos Sensibles especificado. En este ejemplo de JSON se muestra cómo crear un trabajo en Protección de Datos Sensibles. La tarea es un análisis de inspección de Datastore.

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Ten en cuenta que una solicitud correcta, incluso una creada en el Explorador de APIs, creará un trabajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Entrada JSON:

{
  "inspectJob": {
    "storageConfig": {
      "bigQueryOptions": {
        "tableReference": {
          "projectId": "bigquery-public-data",
          "datasetId": "san_francisco_sfpd_incidents",
          "tableId": "sfpd_incidents"
        }
      },
      "timespanConfig": {
        "startTime": "2020-01-01T00:00:01Z",
        "endTime": "2020-01-31T23:59:59Z",
        "timestampField": {
          "name": "timestamp"
        }
      }
    },
    "inspectConfig": {
      "infoTypes": [
        {
          "name": "PERSON_NAME"
        },
        {
          "name": "STREET_ADDRESS"
        }
      ],
      "excludeInfoTypes": false,
      "includeQuote": true,
      "minLikelihood": "LIKELY"
    },
    "actions": [
      {
        "saveFindings": {
          "outputConfig": {
            "table": {
              "projectId": "[PROJECT-ID]",
              "datasetId": "[DATASET-ID]"
            }
          }
        }
      }
    ]
  }
}

Salida JSON:

El siguiente resultado indica que el trabajo se ha creado correctamente.

{
  "name": "projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type": "INSPECT_JOB",
  "state": "PENDING",
  "inspectDetails": {
    "requestedOptions": {
      "snapshotInspectTemplate": {},
      "jobConfig": {
        "storageConfig": {
          "bigQueryOptions": {
            "tableReference": {
              "projectId": "bigquery-public-data",
              "datasetId": "san_francisco_sfpd_incidents",
              "tableId": "sfpd_incidents"
            }
          },
          "timespanConfig": {
            "startTime": "2020-01-01T00:00:01Z",
            "endTime": "2020-01-31T23:59:59Z",
            "timestampField": {
              "name": "timestamp"
            }
          }
        },
        "inspectConfig": {
          "infoTypes": [
            {
              "name": "PERSON_NAME"
            },
            {
              "name": "STREET_ADDRESS"
            }
          ],
          "minLikelihood": "LIKELY",
          "limits": {},
          "includeQuote": true
        },
        "actions": [
          {
            "saveFindings": {
              "outputConfig": {
                "table": {
                  "projectId": "[PROJECT-ID]",
                  "datasetId": "[DATASET-ID]",
                  "tableId": "[TABLE-ID]"
                }
              }
            }
          }
        ]
      }
    },
    "result": {}
  },
  "createTime": "2020-07-10T07:26:33.643Z"
}

Crear un activador de tarea

Para crear un activador de tareas de Protección de Datos Sensibles, siga estos pasos:

Consola

En la sección Protección de Datos Sensibles de la Google Cloud consola, ve a la página Crear tarea o activador de tarea.

Ir a Crear tarea o activador de tareas

La página Crear tarea o activador de tareas contiene las siguientes secciones:

Elegir datos de entrada

Nombre

Escribe un nombre para el activador de la tarea. Puedes usar letras, números y guiones. Ponerle un nombre al activador de trabajo es opcional. Si no introduces un nombre, Protección de Datos Sensibles asignará al activador de la tarea un identificador numérico único.

Ubicación

En el menú Tipo de almacenamiento, elija el tipo de repositorio que almacena los datos que quiere analizar:

  • Cloud Storage: introduce la URL del bucket que quieras analizar o elige Incluir/excluir en el menú Tipo de ubicación y, a continuación, haz clic en Buscar para ir al bucket o a la subcarpeta que quieras analizar. Selecciona la casilla Analizar carpeta de forma recursiva para analizar el directorio especificado y todos los directorios que contenga. Déjala sin seleccionar para analizar solo el directorio especificado y no profundizar más.
  • BigQuery: introduce los identificadores del proyecto, el conjunto de datos y la tabla que quieras analizar.
  • Datastore: introduce los identificadores del proyecto, el espacio de nombres (opcional) y el tipo que quieras analizar.

Muestreo

El muestreo es una forma opcional de ahorrar recursos si tienes un volumen de datos muy grande.

En Muestreo, puede elegir si quiere analizar todos los datos seleccionados o tomar una muestra de los datos analizando un porcentaje determinado. El muestreo funciona de forma diferente en función del tipo de repositorio de almacenamiento que estés analizando:

  • En BigQuery, puedes tomar una muestra de un subconjunto del total de filas seleccionadas, que se corresponderá con el porcentaje de archivos que especifiques para incluir en el análisis.
  • En Cloud Storage, si algún archivo supera el tamaño especificado en Tamaño máximo en bytes que se puede analizar por archivo, Protección de Datos Sensibles lo analiza hasta ese tamaño máximo y, a continuación, pasa al siguiente archivo.

Para activar el muestreo, elige una de las siguientes opciones en el primer menú:

  • Iniciar el muestreo desde el principio: Protección de Datos Sensibles empieza el análisis parcial al principio de los datos. En BigQuery, esto inicia el análisis en la primera fila. En Cloud Storage, el análisis empieza al principio de cada archivo y se detiene cuando Protección de Datos Sensibles ha analizado hasta el tamaño máximo de archivo especificado (consulta la información anterior).
  • Iniciar el muestreo desde un punto aleatorio: Protección de Datos Sensibles empieza el análisis parcial en una ubicación aleatoria de los datos. En BigQuery, se inicia el análisis en una fila aleatoria. En Cloud Storage, este ajuste solo se aplica a los archivos que superen el tamaño máximo especificado. Protección de Datos Sensibles analiza los archivos que no superan el tamaño máximo en su totalidad y los que superan el tamaño máximo hasta alcanzarlo.

Para realizar un análisis parcial, también debe elegir el porcentaje de datos que quiere analizar. Usa el control deslizante para definir el porcentaje.

Configuración avanzada

Cuando creas un activador de trabajo para analizar los contenedores de Cloud Storage o las tablas de BigQuery, puedes acotar la búsqueda especificando una configuración avanzada. En concreto, puedes configurar lo siguiente:

  • Archivos (solo Cloud Storage): los tipos de archivo que se van a analizar, incluidos los archivos de texto, binarios y de imagen.
  • Campos de identificación (solo en BigQuery): identificadores de fila únicos en la tabla.
  • En Cloud Storage, si algún archivo supera el tamaño especificado en Tamaño máximo en bytes que se puede analizar por archivo, Protección de Datos Sensibles lo analiza hasta ese tamaño máximo y, a continuación, pasa al siguiente archivo.

Para activar el muestreo, elija el porcentaje de datos que quiera analizar. Usa el control deslizante para definir el porcentaje. A continuación, elige una de las siguientes opciones del primer menú:

  • Iniciar el muestreo desde el principio: Protección de Datos Sensibles empieza el análisis parcial al principio de los datos. En BigQuery, esto inicia el análisis en la primera fila. En Cloud Storage, el análisis empieza al principio de cada archivo y se detiene cuando Protección de Datos Sensibles ha analizado hasta el tamaño máximo de archivo especificado (consulta la información anterior).
  • Iniciar el muestreo desde un punto aleatorio: Protección de Datos Sensibles empieza el análisis parcial en una ubicación aleatoria de los datos. En BigQuery, se inicia el análisis en una fila aleatoria. En Cloud Storage, este ajuste solo se aplica a los archivos que superen el tamaño máximo especificado. Protección de Datos Sensibles analiza los archivos que no superan el tamaño máximo en su totalidad y los que superan el tamaño máximo hasta alcanzarlo.

Archivos

En el caso de los archivos almacenados en Cloud Storage, puede especificar los tipos que quiere incluir en el análisis en Archivos.

Puedes elegir entre archivos binarios, de texto, de imagen, de Microsoft Word, de Microsoft Excel, de Microsoft PowerPoint, PDF y Apache Avro. Para ver una lista exhaustiva de las extensiones de archivo que Protección de Datos Sensibles puede analizar en los segmentos de Cloud Storage, consulta FileType. Si eliges Binario, Protección de Datos Sensibles analizará los archivos de tipos no reconocidos.

Campos identificativos

En el caso de las tablas de BigQuery, en el campo Campos de identificación, puede indicar a Protección de Datos Sensibles que incluya los valores de las columnas de clave principal de la tabla en los resultados. De esta forma, puede vincular los hallazgos a las filas de la tabla que los contienen.

Introduzca los nombres de las columnas que identifican de forma única cada fila de la tabla. Si es necesario, usa la notación de punto para especificar campos anidados. Puedes añadir todos los campos que quieras.

También debe activar la acción Guardar en BigQuery para exportar las detecciones a BigQuery. Cuando los resultados se exportan a BigQuery, cada uno de ellos contiene los valores respectivos de los campos de identificación. Para obtener más información, consulta identifyingFields.

Configurar detección

En la sección Configurar detección, especifica los tipos de datos sensibles que quieres buscar. Completar esta sección es opcional. Si omite esta sección, Protección de Datos Sensibles analizará sus datos en busca de un conjunto predeterminado de infoTypes.

Template

También puede usar una plantilla de Protección de Datos Sensibles para reutilizar la información de configuración que haya especificado anteriormente.

Si ya has creado una plantilla que quieres usar, haz clic en el campo Nombre de la plantilla para ver una lista de plantillas de inspección. Elige o escribe el nombre de la plantilla que quieras usar.

Para obtener más información sobre cómo crear plantillas, consulta el artículo Crear plantillas de inspección de Protección de Datos Sensibles.

InfoTypes

Los detectores de infoType buscan datos sensibles de un tipo concreto. Por ejemplo, el detector de infoTypes integrado de Protección de Datos Sensibles US_SOCIAL_SECURITY_NUMBER busca números de la seguridad social de EE. UU. Además de los detectores de infoType integrados, puedes crear tus propios detectores de infoType personalizados.

En InfoTypes, elige el detector de infoType que corresponda al tipo de datos que quieras buscar. También puede dejar este campo en blanco para buscar todos los infoTypes predeterminados. Para obtener más información sobre cada detector, consulta la referencia del detector de infoType.

También puede añadir detectores de infoType personalizados en la sección InfoTypes personalizados y personalizar tanto los detectores de infoType integrados como los personalizados en la sección Conjuntos de reglas de inspección.

InfoTypes personalizados
Conjuntos de reglas de inspección
Umbral de confianza

Cada vez que Protección de Datos Sensibles detecta una posible coincidencia de datos sensibles, le asigna un valor de probabilidad en una escala que va de "Muy improbable" a "Muy probable". Cuando asignas un valor de probabilidad aquí, indicas a Protección de Datos Sensibles que solo busque coincidencias en los datos que correspondan a ese valor de probabilidad o a uno superior.

El valor predeterminado "Posible" es suficiente para la mayoría de los propósitos. Si sueles obtener resultados demasiado genéricos, mueve el control deslizante hacia arriba. Si obtienes demasiados pocos resultados, mueve el control deslizante hacia abajo.

Cuando hayas terminado, haz clic en Continuar.

Añadir acciones

En Añadir acciones, selecciona una o varias acciones que la protección de datos sensibles debe llevar a cabo una vez completado el trabajo. Para obtener más información, consulta el artículo Habilitar las acciones de inspección o análisis de riesgos.

Después de seleccionar las acciones, haga clic en Continuar.

Programar

En la sección Programación, puedes hacer dos cosas:

  • Especificar periodo: esta opción limita los archivos o las filas que se van a analizar por fecha. Haz clic en Hora de inicio para especificar la marca de tiempo del archivo más antiguo que quieras incluir. Deje este valor en blanco para especificar todos los archivos. Haz clic en Hora de finalización para especificar la marca de tiempo del archivo más reciente que quieras incluir. Deje este valor en blanco para no especificar ningún límite superior de marca de tiempo.
  • Crear un activador para que la tarea se ejecute según una programación periódica: esta opción convierte la tarea en un activador de tarea que se ejecuta según una programación periódica. Si no especificas una programación, se creará un único trabajo que se iniciará inmediatamente y se ejecutará una vez. Para crear un activador de tarea que se ejecute con regularidad, debes definir esta opción.

    El valor predeterminado también es el valor mínimo: 24 horas. El valor máximo es de 60 días.

    Si quiere que Protección de Datos Sensibles analice solo los archivos o las filas nuevos, seleccione Limitar el análisis solo al contenido nuevo. En la inspección de BigQuery, solo se incluyen en el análisis las filas que tengan al menos tres horas de antigüedad. Consulta el problema conocido relacionado con esta operación.

Revisar

La sección Revisar contiene un resumen en formato JSON de los ajustes del trabajo que acabas de especificar.

Haz clic en Crear para crear el activador de tarea (si has especificado una programación). Aparecerá la página de información del activador de trabajo, que contiene el estado y otra información. Si el trabajo se está ejecutando, puedes hacer clic en el botón Cancelar para detenerlo. También puedes eliminar el activador de trabajo haciendo clic en Eliminar.

Para volver a la página principal Protección de datos sensibles, haz clic en la flecha Atrás de la consola Google Cloud .

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using System;
using System.Collections.Generic;
using static Google.Cloud.Dlp.V2.CloudStorageOptions.Types;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;
using static Google.Cloud.Dlp.V2.JobTrigger.Types;
using static Google.Cloud.Dlp.V2.StorageConfig.Types;

public class TriggersCreate
{
    public static JobTrigger Create(
        string projectId,
        string bucketName,
        Likelihood minLikelihood,
        int maxFindings,
        bool autoPopulateTimespan,
        int scanPeriod,
        IEnumerable<InfoType> infoTypes,
        string triggerId,
        string displayName,
        string description)
    {
        var dlp = DlpServiceClient.Create();

        var jobConfig = new InspectJobConfig
        {
            InspectConfig = new InspectConfig
            {
                MinLikelihood = minLikelihood,
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                InfoTypes = { infoTypes }
            },
            StorageConfig = new StorageConfig
            {
                CloudStorageOptions = new CloudStorageOptions
                {
                    FileSet = new FileSet
                    {
                        Url = $"gs://{bucketName}/*"
                    }
                },
                TimespanConfig = new TimespanConfig
                {
                    EnableAutoPopulationOfTimespanConfig = autoPopulateTimespan
                }
            }
        };

        var jobTrigger = new JobTrigger
        {
            Triggers =
            {
                new Trigger
                {
                    Schedule = new Schedule
                    {
                        RecurrencePeriodDuration = new Google.Protobuf.WellKnownTypes.Duration
                        {
                            Seconds = scanPeriod * 60 * 60 * 24
                        }
                    }
                }
            },
            InspectJob = jobConfig,
            Status = Status.Healthy,
            DisplayName = displayName,
            Description = description
        };

        var response = dlp.CreateJobTrigger(
            new CreateJobTriggerRequest
            {
                Parent = new LocationName(projectId, "global").ToString(),
                JobTrigger = jobTrigger,
                TriggerId = triggerId
            });

        Console.WriteLine($"Successfully created trigger {response.Name}");
        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"github.com/golang/protobuf/ptypes/duration"
)

// createTrigger creates a trigger with the given configuration.
func createTrigger(w io.Writer, projectID string, triggerID, displayName, description, bucketName string, infoTypeNames []string) error {
	// projectID := "my-project-id"
	// triggerID := "my-trigger"
	// displayName := "My Trigger"
	// description := "My trigger description"
	// bucketName := "my-bucket"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}

	// Create a configured request.
	req := &dlppb.CreateJobTriggerRequest{
		Parent:    fmt.Sprintf("projects/%s/locations/global", projectID),
		TriggerId: triggerID,
		JobTrigger: &dlppb.JobTrigger{
			DisplayName: displayName,
			Description: description,
			Status:      dlppb.JobTrigger_HEALTHY,
			// Triggers control when the job will start.
			Triggers: []*dlppb.JobTrigger_Trigger{
				{
					Trigger: &dlppb.JobTrigger_Trigger_Schedule{
						Schedule: &dlppb.Schedule{
							Option: &dlppb.Schedule_RecurrencePeriodDuration{
								RecurrencePeriodDuration: &duration.Duration{
									Seconds: 10 * 60 * 60 * 24, // 10 days in seconds.
								},
							},
						},
					},
				},
			},
			// Job configures the job to run when the trigger runs.
			Job: &dlppb.JobTrigger_InspectJob{
				InspectJob: &dlppb.InspectJobConfig{
					InspectConfig: &dlppb.InspectConfig{
						InfoTypes:     infoTypes,
						MinLikelihood: dlppb.Likelihood_POSSIBLE,
						Limits: &dlppb.InspectConfig_FindingLimits{
							MaxFindingsPerRequest: 10,
						},
					},
					StorageConfig: &dlppb.StorageConfig{
						Type: &dlppb.StorageConfig_CloudStorageOptions{
							CloudStorageOptions: &dlppb.CloudStorageOptions{
								FileSet: &dlppb.CloudStorageOptions_FileSet{
									Url: "gs://" + bucketName + "/*",
								},
							},
						},
						// Time-based configuration for each storage object. See more at
						// https://cloud.google.com/dlp/docs/reference/rest/v2/InspectJobConfig#TimespanConfig
						TimespanConfig: &dlppb.StorageConfig_TimespanConfig{
							// Auto-populate start and end times in order to scan new objects only.
							EnableAutoPopulationOfTimespanConfig: true,
						},
					},
				},
			},
		},
	}

	// Send the request.
	resp, err := client.CreateJobTrigger(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateJobTrigger: %w", err)
	}
	fmt.Fprintf(w, "Successfully created trigger: %v", resp.GetName())
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateJobTriggerRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.Schedule;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.privacy.dlp.v2.StorageConfig.TimespanConfig;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class TriggersCreate {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createTrigger(projectId, gcsPath);
  }

  public static void createTrigger(String projectId, String gcsPath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Set autoPopulateTimespan to true to scan only new content
      boolean autoPopulateTimespan = true;
      TimespanConfig timespanConfig =
          TimespanConfig.newBuilder()
              .setEnableAutoPopulationOfTimespanConfig(autoPopulateTimespan)
              .build();

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();
      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .setTimespanConfig(timespanConfig)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      InspectConfig inspectConfig = InspectConfig.newBuilder().addAllInfoTypes(infoTypes).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .build();

      // Set scanPeriod to the number of days between scans (minimum: 1 day)
      int scanPeriod = 1;

      // Optionally set a display name of max 100 chars and a description of max 250 chars
      String displayName = "Daily Scan";
      String description = "A daily inspection for personally identifiable information.";

      // Schedule scan of GCS bucket every scanPeriod number of days (minimum = 1 day)
      Duration duration = Duration.newBuilder().setSeconds(scanPeriod * 24 * 3600).build();
      Schedule schedule = Schedule.newBuilder().setRecurrencePeriodDuration(duration).build();
      JobTrigger.Trigger trigger = JobTrigger.Trigger.newBuilder().setSchedule(schedule).build();
      JobTrigger jobTrigger =
          JobTrigger.newBuilder()
              .setInspectJob(inspectJobConfig)
              .setDisplayName(displayName)
              .setDescription(description)
              .setStatus(JobTrigger.Status.HEALTHY)
              .addTriggers(trigger)
              .build();

      // Create scan request to be sent by client
      CreateJobTriggerRequest createJobTriggerRequest =
          CreateJobTriggerRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setJobTrigger(jobTrigger)
              .build();

      // Send the scan request and process the response
      JobTrigger createdJobTrigger = dlpServiceClient.createJobTrigger(createJobTriggerRequest);

      System.out.println("Created Trigger: " + createdJobTrigger.getName());
      System.out.println("Display Name: " + createdJobTrigger.getDisplayName());
      System.out.println("Description: " + createdJobTrigger.getDescription());
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// (Optional) The name of the trigger to be created.
// const triggerId = 'my-trigger';

// (Optional) A display name for the trigger to be created
// const displayName = 'My Trigger';

// (Optional) A description for the trigger to be created
// const description = "This is a sample trigger.";

// The name of the bucket to scan.
// const bucketName = 'YOUR-BUCKET';

// Limit scan to new content only.
// const autoPopulateTimespan = true;

// How often to wait between scans, in days (minimum = 1 day)
// const scanPeriod = 1;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

async function createTrigger() {
  // Get reference to the bucket to be inspected
  const storageItem = {
    cloudStorageOptions: {
      fileSet: {url: `gs://${bucketName}/*`},
    },
    timeSpanConfig: {
      enableAutoPopulationOfTimespanConfig: autoPopulateTimespan,
    },
  };

  // Construct job to be triggered
  const job = {
    inspectConfig: {
      infoTypes: infoTypes,
      minLikelihood: minLikelihood,
      limits: {
        maxFindingsPerRequest: maxFindings,
      },
    },
    storageConfig: storageItem,
  };

  // Construct trigger creation request
  const request = {
    parent: `projects/${projectId}/locations/global`,
    jobTrigger: {
      inspectJob: job,
      displayName: displayName,
      description: description,
      triggers: [
        {
          schedule: {
            recurrencePeriodDuration: {
              seconds: scanPeriod * 60 * 60 * 24, // Trigger the scan daily
            },
          },
        },
      ],
      status: 'HEALTHY',
    },
    triggerId: triggerId,
  };

  // Run trigger creation request
  const [trigger] = await dlp.createJobTrigger(request);
  console.log(`Successfully created trigger ${trigger.name}.`);
}

createTrigger();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateJobTriggerRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\JobTrigger;
use Google\Cloud\Dlp\V2\JobTrigger\Status;
use Google\Cloud\Dlp\V2\JobTrigger\Trigger;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Schedule;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\StorageConfig\TimespanConfig;
use Google\Protobuf\Duration;

/**
 * Create a Data Loss Prevention API job trigger.
 *
 * @param string $callingProjectId     The project ID to run the API call under
 * @param string $bucketName           The name of the bucket to scan
 * @param string $triggerId            (Optional) The name of the trigger to be created
 * @param string $displayName          (Optional) The human-readable name to give the trigger
 * @param string $description          (Optional) A description for the trigger to be created
 * @param int    $scanPeriod           (Optional) How often to wait between scans, in days (minimum = 1 day)
 * @param bool   $autoPopulateTimespan (Optional) Automatically limit scan to new content only
 * @param int    $maxFindings          (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function create_trigger(
    string $callingProjectId,
    string $bucketName,
    string $triggerId,
    string $displayName,
    string $description,
    int $scanPeriod,
    bool $autoPopulateTimespan,
    int $maxFindings
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // ----- Construct job config -----
    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$personNameInfoType, $phoneNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Create the inspectConfig object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Create triggers
    $duration = (new Duration())
        ->setSeconds($scanPeriod * 60 * 60 * 24);

    $schedule = (new Schedule())
        ->setRecurrencePeriodDuration($duration);

    $triggerObject = (new Trigger())
        ->setSchedule($schedule);

    // Create the storageConfig object
    $fileSet = (new FileSet())
        ->setUrl('gs://' . $bucketName . '/*');

    $storageOptions = (new CloudStorageOptions())
        ->setFileSet($fileSet);

    // Auto-populate start and end times in order to scan new objects only.
    $timespanConfig = (new TimespanConfig())
        ->setEnableAutoPopulationOfTimespanConfig($autoPopulateTimespan);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($storageOptions)
        ->setTimespanConfig($timespanConfig);

    // Construct the jobConfig object
    $jobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig);

    // ----- Construct trigger object -----
    $jobTriggerObject = (new JobTrigger())
        ->setTriggers([$triggerObject])
        ->setInspectJob($jobConfig)
        ->setStatus(Status::HEALTHY)
        ->setDisplayName($displayName)
        ->setDescription($description);

    // Run trigger creation request
    $parent = $dlp->locationName($callingProjectId, 'global');
    $createJobTriggerRequest = (new CreateJobTriggerRequest())
        ->setParent($parent)
        ->setJobTrigger($jobTriggerObject)
        ->setTriggerId($triggerId);
    $trigger = $dlp->createJobTrigger($createJobTriggerRequest);

    // Print results
    printf('Successfully created trigger %s' . PHP_EOL, $trigger->getName());
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from typing import Optional

import google.cloud.dlp


def create_trigger(
    project: str,
    bucket: str,
    scan_period_days: int,
    info_types: List[str],
    trigger_id: Optional[str] = None,
    display_name: Optional[str] = None,
    description: Optional[str] = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    auto_populate_timespan: Optional[bool] = False,
) -> None:
    """Creates a scheduled Data Loss Prevention API inspect_content trigger.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket to scan. This sample scans all
            files in the bucket using a wildcard.
        scan_period_days: How often to repeat the scan, in days.
            The minimum is 1 day.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        trigger_id: The id of the trigger. If omitted, an id will be randomly
            generated.
        display_name: The optional display name of the trigger.
        description: The optional description of the trigger.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        auto_populate_timespan: Automatically populates time span config start
            and end times in order to scan new content only.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {"file_set": {"url": url}},
        # Time-based configuration for each storage object.
        "timespan_config": {
            # Auto-populate start and end times in order to scan new objects
            # only.
            "enable_auto_population_of_timespan_config": auto_populate_timespan
        },
    }

    # Construct the job definition.
    job = {"inspect_config": inspect_config, "storage_config": storage_config}

    # Construct the schedule definition:
    schedule = {
        "recurrence_period_duration": {"seconds": scan_period_days * 60 * 60 * 24}
    }

    # Construct the trigger definition.
    job_trigger = {
        "inspect_job": job,
        "display_name": display_name,
        "description": description,
        "triggers": [{"schedule": schedule}],
        "status": google.cloud.dlp_v2.JobTrigger.Status.HEALTHY,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_job_trigger(
        request={"parent": parent, "job_trigger": job_trigger, "trigger_id": trigger_id}
    )

    print(f"Successfully created trigger {response.name}")

REST

En la API DLP, un activador de tareas se representa mediante el recurso JobTrigger. Puedes crear un nuevo activador de trabajo mediante el método projects.jobTriggers.create del recurso JobTrigger.

Este JSON de ejemplo se puede enviar en una solicitud POST al endpoint REST de Protección de Datos Sensibles especificado. En este ejemplo de JSON se muestra cómo crear un activador de trabajo en Protección de Datos Sensibles. La tarea que activará este activador es un análisis de inspección de Datastore. El activador de tareas que se crea se ejecuta cada 86.400 segundos (24 horas).

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Ten en cuenta que, si la solicitud se completa correctamente, aunque se haya creado en Explorador de APIs, se creará un nuevo activador de tarea programada. Para obtener información general sobre el uso de JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Entrada JSON:

{
  "jobTrigger":{
    "displayName":"JobTrigger1",
    "description":"Starts an inspection of a Datastore kind",
    "triggers":[
      {
        "schedule":{
          "recurrencePeriodDuration":"86400s"
        }
      }
    ],
    "status":"HEALTHY",
    "inspectJob":{
      "storageConfig":{
        "datastoreOptions":{
          "kind":{
            "name":"Example-Kind"
          },
          "partitionId":{
            "projectId":"[PROJECT_ID]",
            "namespaceId":"[NAMESPACE_ID]"
          }
        }
      },
      "inspectConfig":{
        "infoTypes":[
          {
            "name":"PHONE_NUMBER"
          }
        ],
        "excludeInfoTypes":false,
        "includeQuote":true,
        "minLikelihood":"LIKELY"
      },
      "actions":[
        {
          "saveFindings":{
            "outputConfig":{
              "table":{
                "projectId":"[PROJECT_ID]",
                "datasetId":"[BIGQUERY_DATASET_NAME]",
                "tableId":"[BIGQUERY_TABLE_NAME]"
              }
            }
          }
        }
      ]
    }
  }
}

Salida JSON:

El siguiente resultado indica que el activador de la tarea se ha creado correctamente.

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "displayName":"JobTrigger1",
  "description":"Starts an inspection of a Datastore kind",
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "partitionId":{
          "projectId":"[PROJECT_ID]",
          "namespaceId":"[NAMESPACE_ID]"
        },
        "kind":{
          "name":"Example-Kind"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "minLikelihood":"LIKELY",
      "limits":{

      },
      "includeQuote":true
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT_ID]",
              "datasetId":"[BIGQUERY_DATASET_NAME]",
              "tableId":"[BIGQUERY_TABLE_NAME]"
            }
          }
        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2018-11-30T01:52:41.171857Z",
  "updateTime":"2018-11-30T01:52:41.171857Z",
  "status":"HEALTHY"
}

Mostrar todas las tareas

Para mostrar todos los trabajos del proyecto actual, haz lo siguiente:

Consola

  1. En la Google Cloud consola, ve a la página Protección de datos sensibles.

    Ir a Protección de Datos Sensibles

  2. Haga clic en la pestaña Inspección y, a continuación, en la subpestaña Inspeccionar trabajos.

La consola muestra una lista de todos los trabajos del proyecto actual, incluidos sus identificadores, su estado, su hora de creación y su hora de finalización. Para obtener más información sobre cualquier tarea, incluido un resumen de sus resultados, haz clic en su identificador.

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Api.Gax;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;

public class JobsList
{
    public static PagedEnumerable<ListDlpJobsResponse, DlpJob> ListDlpJobs(string projectId, string filter, DlpJobType jobType)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.ListDlpJobs(new ListDlpJobsRequest
        {
            Parent = new LocationName(projectId, "global").ToString(),
            Filter = filter,
            Type = jobType
        });

        // Uncomment to print jobs
        // foreach (var job in response)
        // {
        //     Console.WriteLine($"Job: {job.Name} status: {job.State}");
        // }

        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"google.golang.org/api/iterator"
)

// listJobs lists jobs matching the given optional filter and optional jobType.
func listJobs(w io.Writer, projectID, filter, jobType string) error {
	// projectID := "my-project-id"
	// filter := "`state` = FINISHED"
	// jobType := "RISK_ANALYSIS_JOB"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a configured request.
	req := &dlppb.ListDlpJobsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Filter: filter,
		Type:   dlppb.DlpJobType(dlppb.DlpJobType_value[jobType]),
	}
	// Send the request and iterate over the results.
	it := client.ListDlpJobs(ctx, req)
	for {
		j, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("Next: %w", err)
		}
		fmt.Fprintf(w, "Job %v status: %v\n", j.GetName(), j.GetState())
	}
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.DlpJobType;
import com.google.privacy.dlp.v2.ListDlpJobsRequest;
import com.google.privacy.dlp.v2.LocationName;
import java.io.IOException;

public class JobsList {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    listJobs(projectId);
  }

  // Lists DLP jobs
  public static void listJobs(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the request to be sent by the client.
      // For more info on filters and job types,
      // see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
      ListDlpJobsRequest listDlpJobsRequest =
          ListDlpJobsRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setFilter("state=DONE")
              .setType(DlpJobType.valueOf("INSPECT_JOB"))
              .build();

      // Send the request to list jobs and process the response
      DlpServiceClient.ListDlpJobsPagedResponse response =
          dlpServiceClient.listDlpJobs(listDlpJobsRequest);

      System.out.println("DLP jobs found:");
      for (DlpJob dlpJob : response.getPage().getValues()) {
        System.out.println(dlpJob.getName() + " -- " + dlpJob.getState());
      }
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The filter expression to use
// For more information and filter syntax, see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
// const filter = `state=DONE`;

// The type of job to list (either 'INSPECT_JOB' or 'RISK_ANALYSIS_JOB')
// const jobType = 'INSPECT_JOB';
async function listJobs() {
  // Construct request for listing DLP scan jobs
  const request = {
    parent: `projects/${projectId}/locations/global`,
    filter: filter,
    type: jobType,
  };

  // Run job-listing request
  const [jobs] = await dlp.listDlpJobs(request);
  jobs.forEach(job => {
    console.log(`Job ${job.name} status: ${job.state}`);
  });
}

listJobs();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\DlpJobType;
use Google\Cloud\Dlp\V2\ListDlpJobsRequest;

/**
 * List Data Loss Prevention API jobs corresponding to a given filter.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $filter            The filter expression to use
 */
function list_jobs(string $callingProjectId, string $filter): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // The type of job to list (either 'INSPECT_JOB' or 'REDACT_JOB')
    $jobType = DlpJobType::INSPECT_JOB;

    // Run job-listing request
    // For more information and filter syntax,
    // @see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
    $parent = "projects/$callingProjectId/locations/global";
    $listDlpJobsRequest = (new ListDlpJobsRequest())
        ->setParent($parent)
        ->setFilter($filter)
        ->setType($jobType);
    $response = $dlp->listDlpJobs($listDlpJobsRequest);

    // Print job list
    $jobs = $response->iterateAllElements();
    foreach ($jobs as $job) {
        printf('Job %s status: %s' . PHP_EOL, $job->getName(), $job->getState());
        $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();

        if ($job->getState() == JobState::DONE) {
            if (count($infoTypeStats) > 0) {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of type %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            } else {
                print('  No findings.' . PHP_EOL);
            }
        }
    }
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


from typing import Optional

import google.cloud.dlp


def list_dlp_jobs(
    project: str, filter_string: Optional[str] = None, job_type: Optional[str] = None
) -> None:
    """Uses the Data Loss Prevention API to lists DLP jobs that match the
        specified filter in the request.
    Args:
        project: The project id to use as a parent resource.
        filter: (Optional) Allows filtering.
            Supported syntax:
            * Filter expressions are made up of one or more restrictions.
            * Restrictions can be combined by 'AND' or 'OR' logical operators.
            A sequence of restrictions implicitly uses 'AND'.
            * A restriction has the form of '<field> <operator> <value>'.
            * Supported fields/values for inspect jobs:
                - `state` - PENDING|RUNNING|CANCELED|FINISHED|FAILED
                - `inspected_storage` - DATASTORE|CLOUD_STORAGE|BIGQUERY
                - `trigger_name` - The resource name of the trigger that
                                   created job.
            * Supported fields for risk analysis jobs:
                - `state` - RUNNING|CANCELED|FINISHED|FAILED
            * The operator must be '=' or '!='.
            Examples:
            * inspected_storage = cloud_storage AND state = done
            * inspected_storage = cloud_storage OR inspected_storage = bigquery
            * inspected_storage = cloud_storage AND
                                  (state = done OR state = canceled)
        type: (Optional) The type of job. Defaults to 'INSPECT'.
            Choices:
            DLP_JOB_TYPE_UNSPECIFIED
            INSPECT_JOB: The job inspected content for sensitive data.
            RISK_ANALYSIS_JOB: The job executed a Risk Analysis computation.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Job type dictionary
    job_type_to_int = {
        "DLP_JOB_TYPE_UNSPECIFIED": google.cloud.dlp.DlpJobType.DLP_JOB_TYPE_UNSPECIFIED,
        "INSPECT_JOB": google.cloud.dlp.DlpJobType.INSPECT_JOB,
        "RISK_ANALYSIS_JOB": google.cloud.dlp.DlpJobType.RISK_ANALYSIS_JOB,
    }
    # If job type is specified, convert job type to number through enums.
    if job_type:
        job_type = job_type_to_int[job_type]

    # Call the API to get a list of jobs.
    response = dlp.list_dlp_jobs(
        request={"parent": parent, "filter": filter_string, "type_": job_type}
    )

    # Iterate over results.
    for job in response:
        print(f"Job: {job.name}; status: {job.state.name}")

REST

El recurso DlpJob tiene un método projects.dlpJobs.list con el que puedes enumerar todos los trabajos.

Para ver una lista de todos los trabajos definidos en tu proyecto, envía una solicitud GET al endpoint dlpJobs, como se muestra a continuación:

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

En la siguiente salida JSON se muestra uno de los trabajos devueltos. Ten en cuenta que la estructura del trabajo es similar a la del recurso DlpJob.

Salida JSON:

{
  "jobs":[
    {
      "name":"projects/[PROJECT-ID]/dlpJobs/i-5270277269264714623",
      "type":"INSPECT_JOB",
      "state":"DONE",
      "inspectDetails":{
        "requestedOptions":{
          "snapshotInspectTemplate":{
          },
          "jobConfig":{
            "storageConfig":{
              "cloudStorageOptions":{
                "fileSet":{
                  "url":"[CLOUD-STORAGE-URL]"
                },
                "fileTypes":[
                  "FILE_TYPE_UNSPECIFIED"
                ],
                "filesLimitPercent":100
              },
              "timespanConfig":{
                "startTime":"2019-09-08T22:43:16.623Z",
                "enableAutoPopulationOfTimespanConfig":true
              }
            },
            "inspectConfig":{
              "infoTypes":[
                {
                  "name":"US_SOCIAL_SECURITY_NUMBER"
                },
                {
                  "name":"CANADA_SOCIAL_INSURANCE_NUMBER"
                }
              ],
              "minLikelihood":"LIKELY",
              "limits":{
              },
              "includeQuote":true
            },
            "actions":[
              {
                "saveFindings":{
                  "outputConfig":{
                    "table":{
                      "projectId":"[PROJECT-ID]",
                      "datasetId":"[DATASET-ID]",
                      "tableId":"[TABLE-ID]"
                    }
                  }
                }
              }
            ]
          }
        },
        "result":{
          ...
        }
      },
      "createTime":"2019-09-09T22:43:16.918Z",
      "startTime":"2019-09-09T22:43:16.918Z",
      "endTime":"2019-09-09T22:43:53.091Z",
      "jobTriggerName":"projects/[PROJECT-ID]/jobTriggers/sample-trigger2"
    },
    ...

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Mostrar todos los activadores de tareas

Para mostrar todos los activadores de trabajos del proyecto actual, haz lo siguiente:

Consola

En la Google Cloud consola, ve a la página Protección de datos sensibles.

Ir a Protección de Datos Sensibles

En la pestaña Inspección, en la subpestaña Activadores de trabajos, la consola muestra una lista de todos los activadores de trabajos del proyecto actual.

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Api.Gax;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using System;

public class TriggersList
{
    public static PagedEnumerable<ListJobTriggersResponse, JobTrigger> List(string projectId)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.ListJobTriggers(
            new ListJobTriggersRequest
            {
                Parent = new LocationName(projectId, "global").ToString(),
            });

        foreach (var trigger in response)
        {
            Console.WriteLine($"Name: {trigger.Name}");
            Console.WriteLine($"  Created: {trigger.CreateTime}");
            Console.WriteLine($"  Updated: {trigger.UpdateTime}");
            Console.WriteLine($"  Display Name: {trigger.DisplayName}");
            Console.WriteLine($"  Description: {trigger.Description}");
            Console.WriteLine($"  Status: {trigger.Status}");
            Console.WriteLine($"  Error count: {trigger.Errors.Count}");
        }

        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"github.com/golang/protobuf/ptypes"
	"google.golang.org/api/iterator"
)

// listTriggers lists the triggers for the given project.
func listTriggers(w io.Writer, projectID string) error {
	// projectID := "my-project-id"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a configured request.
	req := &dlppb.ListJobTriggersRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
	}
	// Send the request and iterate over the results.
	it := client.ListJobTriggers(ctx, req)
	for {
		t, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("Next: %w", err)
		}
		fmt.Fprintf(w, "Trigger %v\n", t.GetName())
		c, err := ptypes.Timestamp(t.GetCreateTime())
		if err != nil {
			return fmt.Errorf("CreateTime Timestamp: %w", err)
		}
		fmt.Fprintf(w, "  Created: %v\n", c.Format(time.RFC1123))
		u, err := ptypes.Timestamp(t.GetUpdateTime())
		if err != nil {
			return fmt.Errorf("UpdateTime Timestamp: %w", err)
		}
		fmt.Fprintf(w, "  Updated: %v\n", u.Format(time.RFC1123))
		fmt.Fprintf(w, "  Display Name: %q\n", t.GetDisplayName())
		fmt.Fprintf(w, "  Description: %q\n", t.GetDescription())
		fmt.Fprintf(w, "  Status: %v\n", t.GetStatus())
		fmt.Fprintf(w, "  Error Count: %v\n", len(t.GetErrors()))
	}

	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.ListJobTriggersRequest;
import com.google.privacy.dlp.v2.LocationName;
import java.io.IOException;

class TriggersList {
  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    listTriggers(projectId);
  }

  public static void listTriggers(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {
      // Build the request to be sent by the client
      ListJobTriggersRequest listJobTriggersRequest =
          ListJobTriggersRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .build();

      // Use the client to send the API request.
      DlpServiceClient.ListJobTriggersPagedResponse response =
          dlpServiceClient.listJobTriggers(listJobTriggersRequest);

      // Parse the response and process the results
      System.out.println("DLP triggers found:");
      for (JobTrigger trigger : response.getPage().getValues()) {
        System.out.println("Trigger: " + trigger.getName());
        System.out.println("\tCreated: " + trigger.getCreateTime());
        System.out.println("\tUpdated: " + trigger.getUpdateTime());
        if (trigger.getDisplayName() != null) {
          System.out.println("\tDisplay name: " + trigger.getDisplayName());
        }
        if (trigger.getDescription() != null) {
          System.out.println("\tDescription: " + trigger.getDescription());
        }
        System.out.println("\tStatus: " + trigger.getStatus());
        System.out.println("\tError count: " + trigger.getErrorsCount());
      }
      ;
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project'

async function listTriggers() {
  // Construct trigger listing request
  const request = {
    parent: `projects/${projectId}/locations/global`,
  };

  // Helper function to pretty-print dates
  const formatDate = date => {
    const msSinceEpoch = parseInt(date.seconds, 10) * 1000;
    return new Date(msSinceEpoch).toLocaleString('en-US');
  };

  // Run trigger listing request
  const [triggers] = await dlp.listJobTriggers(request);
  triggers.forEach(trigger => {
    // Log trigger details
    console.log(`Trigger ${trigger.name}:`);
    console.log(`  Created: ${formatDate(trigger.createTime)}`);
    console.log(`  Updated: ${formatDate(trigger.updateTime)}`);
    if (trigger.displayName) {
      console.log(`  Display Name: ${trigger.displayName}`);
    }
    if (trigger.description) {
      console.log(`  Description: ${trigger.description}`);
    }
    console.log(`  Status: ${trigger.status}`);
    console.log(`  Error count: ${trigger.errors.length}`);
  });
}

listTriggers();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\ListJobTriggersRequest;

/**
 * List Data Loss Prevention API job triggers.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 */
function list_triggers(string $callingProjectId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    $parent = "projects/$callingProjectId/locations/global";

    // Run request
    $listJobTriggersRequest = (new ListJobTriggersRequest())
        ->setParent($parent);
    $response = $dlp->listJobTriggers($listJobTriggersRequest);

    // Print results
    $triggers = $response->iterateAllElements();
    foreach ($triggers as $trigger) {
        printf('Trigger %s' . PHP_EOL, $trigger->getName());
        printf('  Created: %s' . PHP_EOL, $trigger->getCreateTime()->getSeconds());
        printf('  Updated: %s' . PHP_EOL, $trigger->getUpdateTime()->getSeconds());
        printf('  Display Name: %s' . PHP_EOL, $trigger->getDisplayName());
        printf('  Description: %s' . PHP_EOL, $trigger->getDescription());
        printf('  Status: %s' . PHP_EOL, $trigger->getStatus());
        printf('  Error count: %s' . PHP_EOL, count($trigger->getErrors()));
        $timespanConfig = $trigger->getInspectJob()->getStorageConfig()->getTimespanConfig();
        printf('  Auto-populates timespan config: %s' . PHP_EOL,
            ($timespanConfig && $timespanConfig->getEnableAutoPopulationOfTimespanConfig() ? 'yes' : 'no'));
    }
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import google.cloud.dlp


def list_triggers(project: str) -> None:
    """Lists all Data Loss Prevention API triggers.
    Args:
        project: The Google Cloud project id to use as a parent resource.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.list_job_triggers(request={"parent": parent})

    for trigger in response:
        print(f"Trigger {trigger.name}:")
        print(f"  Created: {trigger.create_time}")
        print(f"  Updated: {trigger.update_time}")
        if trigger.display_name:
            print(f"  Display Name: {trigger.display_name}")
        if trigger.description:
            print(f"  Description: {trigger.description}")
        print(f"  Status: {trigger.status}")
        print(f"  Error count: {len(trigger.errors)}")

REST

El recurso JobTrigger tiene un método projects.jobTriggers.list con el que puedes enumerar todos los activadores de trabajos.

Para enumerar todos los activadores de tareas definidos en tu proyecto, envía una solicitud GET al endpoint jobTriggers, como se muestra a continuación:

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/jobTriggers?key={YOUR_API_KEY}

En la siguiente salida JSON se muestra el activador de trabajo que hemos creado en la sección anterior. Ten en cuenta que la estructura del activador de tareas es similar a la del recurso JobTrigger.

Salida JSON:

{
  "jobTriggers":[
    {
      "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
      "displayName":"JobTrigger1",
      "description":"Starts an inspection of a Datastore kind",
      "inspectJob":{
        "storageConfig":{
          "datastoreOptions":{
            "partitionId":{
              "projectId":"[PROJECT_ID]",
              "namespaceId":"[NAMESPACE_ID]"
            },
            "kind":{
              "name":"Example-Kind"
            }
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PHONE_NUMBER"
            }
          ],
          "minLikelihood":"LIKELY",
          "limits":{

          },
          "includeQuote":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT_ID]",
                  "datasetId":"[BIGQUERY_DATASET_NAME]",
                  "tableId":"[BIGQUERY_TABLE_NAME]"
                }
              }
            }
          }
        ]
      },
      "triggers":[
        {
          "schedule":{
            "recurrencePeriodDuration":"86400s"
          }
        }
      ],
      "createTime":"2018-11-30T01:52:41.171857Z",
      "updateTime":"2018-11-30T01:52:41.171857Z",
      "status":"HEALTHY"
    },

    ...

],
  "nextPageToken":"KkwKCQjivJ2UpPreAgo_Kj1wcm9qZWN0cy92ZWx2ZXR5LXN0dWR5LTE5NjEwMS9qb2JUcmlnZ2Vycy8xNTA5NzEyOTczMDI0MDc1NzY0"
}

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Eliminar una tarea

Para eliminar un trabajo de tu proyecto, incluidos sus resultados, haz lo siguiente: Esta operación no afecta a los resultados guardados externamente (por ejemplo, en BigQuery).

Consola

  1. En la Google Cloud consola, ve a la página Protección de datos sensibles.

    Ir a Protección de Datos Sensibles

  2. Haga clic en la pestaña Inspección y, a continuación, en la subpestaña Inspeccionar trabajos. La Google Cloud consola muestra una lista de todos los trabajos del proyecto actual.

  3. En la columna Acciones del activador de trabajo que quieras eliminar, haz clic en el menú Más acciones (tres puntos verticales) y, a continuación, en Eliminar.

También puedes hacer clic en el identificador del trabajo que quieras eliminar en la lista de trabajos. En la página de detalles del empleo, haz clic en Eliminar.

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using System;
using Google.Cloud.Dlp.V2;

public class JobsDelete
{
    public static void DeleteJob(string jobName)
    {
        var dlp = DlpServiceClient.Create();

        dlp.DeleteDlpJob(new DeleteDlpJobRequest
        {
            Name = jobName
        });

        Console.WriteLine($"Successfully deleted job {jobName}.");
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// deleteJob deletes the job with the given name.
func deleteJob(w io.Writer, jobName string) error {
	// jobName := "job-example"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()
	req := &dlppb.DeleteDlpJobRequest{
		Name: jobName,
	}
	if err = client.DeleteDlpJob(ctx, req); err != nil {
		return fmt.Errorf("DeleteDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Successfully deleted job")
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DeleteDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJobName;
import java.io.IOException;

public class JobsDelete {
  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String jobId = "your-job-id";
    deleteJobs(projectId, jobId);
  }

  // Deletes a DLP Job with the given jobId
  public static void deleteJobs(String projectId, String jobId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the complete job name from the projectId and jobId
      DlpJobName jobName = DlpJobName.of(projectId, jobId);

      // Construct the job deletion request to be sent by the client.
      DeleteDlpJobRequest deleteDlpJobRequest =
          DeleteDlpJobRequest.newBuilder().setName(jobName.toString()).build();

      // Send the job deletion request
      dlpServiceClient.deleteDlpJob(deleteDlpJobRequest);
      System.out.println("Job deleted successfully.");
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The name of the job whose results should be deleted
// Parent project ID is automatically extracted from this parameter
// const jobName = 'projects/my-project/dlpJobs/X-#####'

function deleteJob() {
  // Construct job deletion request
  const request = {
    name: jobName,
  };

  // Run job deletion request
  dlp
    .deleteDlpJob(request)
    .then(() => {
      console.log(`Successfully deleted job ${jobName}.`);
    })
    .catch(err => {
      console.log(`Error in deleteJob: ${err.message || err}`);
    });
}

deleteJob();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DeleteDlpJobRequest;

/**
 * Delete results of a Data Loss Prevention API job
 *
 * @param string $jobId The name of the job whose results should be deleted
 */
function delete_job(string $jobId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Run job-deletion request
    // The Parent project ID is automatically extracted from this parameter
    $deleteDlpJobRequest = (new DeleteDlpJobRequest())
        ->setName($jobId);
    $dlp->deleteDlpJob($deleteDlpJobRequest);

    // Print status
    printf('Successfully deleted job %s' . PHP_EOL, $jobId);
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import google.cloud.dlp


def delete_dlp_job(project: str, job_name: str) -> None:
    """Uses the Data Loss Prevention API to delete a long-running DLP job.
    Args:
        project: The project id to use as a parent resource.
        job_name: The name of the DlpJob resource to be deleted.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id and job name into a full resource id.
    name = f"projects/{project}/dlpJobs/{job_name}"

    # Call the API to delete job.
    dlp.delete_dlp_job(request={"name": name})

    print(f"Successfully deleted {job_name}")

REST

Para eliminar un trabajo del proyecto actual, envía una solicitud DELETE al endpoint dlpJobs, como se muestra aquí. Sustituye el campo [JOB-IDENTIFIER] por el identificador del trabajo, que empieza por i-.

URL:

DELETE https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs/[JOB-IDENTIFIER]?key={YOUR_API_KEY}

Si la solicitud se ha realizado correctamente, la API DLP devolverá una respuesta de éxito. Para verificar que la tarea se ha eliminado correctamente, lista todas las tareas.

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Eliminar un activador de tarea

Consola

  1. En la Google Cloud consola, ve a la página Protección de datos sensibles.

    Ir a Protección de Datos Sensibles

    En la pestaña Inspección, en la subpestaña Activadores de trabajos, la consola muestra una lista de todos los activadores de trabajos del proyecto actual.

  2. En la columna Acciones del activador de trabajo que quieras eliminar, haz clic en el menú Más acciones (tres puntos verticales) y, a continuación, en Eliminar.

También puedes hacer clic en el nombre del activador de trabajo que quieras eliminar en la lista de activadores de trabajo. En la página de detalles del activador de la tarea, haz clic en Eliminar.

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Cloud.Dlp.V2;
using System;

public class TriggersDelete
{

    public static void Delete(string triggerName)
    {
        var dlp = DlpServiceClient.Create();

        dlp.DeleteJobTrigger(
            new DeleteJobTriggerRequest
            {
                Name = triggerName
            });

        Console.WriteLine($"Successfully deleted trigger {triggerName}.");
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// deleteTrigger deletes the given trigger.
func deleteTrigger(w io.Writer, triggerID string) error {
	// triggerID := "my-trigger"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	req := &dlppb.DeleteJobTriggerRequest{
		Name: triggerID,
	}

	if err := client.DeleteJobTrigger(ctx, req); err != nil {
		return fmt.Errorf("DeleteJobTrigger: %w", err)
	}
	fmt.Fprintf(w, "Successfully deleted trigger %v", triggerID)
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DeleteJobTriggerRequest;
import com.google.privacy.dlp.v2.ProjectJobTriggerName;
import java.io.IOException;

class TriggersDelete {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String triggerId = "your-trigger-id";
    deleteTrigger(projectId, triggerId);
  }

  public static void deleteTrigger(String projectId, String triggerId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Get the full trigger name from the given triggerId and ProjectId
      ProjectJobTriggerName triggerName = ProjectJobTriggerName.of(projectId, triggerId);

      // Construct the trigger deletion request to be sent by the client
      DeleteJobTriggerRequest deleteJobTriggerRequest =
          DeleteJobTriggerRequest.newBuilder().setName(triggerName.toString()).build();

      // Send the trigger deletion request
      dlpServiceClient.deleteJobTrigger(deleteJobTriggerRequest);
      System.out.println("Trigger deleted: " + triggerName.toString());
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project'

// The name of the trigger to be deleted
// Parent project ID is automatically extracted from this parameter
// const triggerId = 'projects/my-project/triggers/my-trigger';

async function deleteTrigger() {
  // Construct trigger deletion request
  const request = {
    name: triggerId,
  };

  // Run trigger deletion request
  await dlp.deleteJobTrigger(request);
  console.log(`Successfully deleted trigger ${triggerId}.`);
}

deleteTrigger();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DeleteJobTriggerRequest;

/**
 * Delete a Data Loss Prevention API job trigger.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $triggerId         The name of the trigger to be deleted.
 */
function delete_trigger(string $callingProjectId, string $triggerId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Run request
    // The Parent project ID is automatically extracted from this parameter
    $triggerName = "projects/$callingProjectId/locations/global/jobTriggers/$triggerId";
    $deleteJobTriggerRequest = (new DeleteJobTriggerRequest())
        ->setName($triggerName);
    $dlp->deleteJobTrigger($deleteJobTriggerRequest);

    // Print the results
    printf('Successfully deleted trigger %s' . PHP_EOL, $triggerName);
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import google.cloud.dlp


def delete_trigger(project: str, trigger_id: str) -> None:
    """Deletes a Data Loss Prevention API trigger.
    Args:
        project: The id of the Google Cloud project which owns the trigger.
        trigger_id: The id of the trigger to delete.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Combine the trigger id with the parent id.
    trigger_resource = f"{parent}/jobTriggers/{trigger_id}"

    # Call the API.
    dlp.delete_job_trigger(request={"name": trigger_resource})

    print(f"Trigger {trigger_resource} successfully deleted.")

REST

Para eliminar un activador de trabajo del proyecto actual, envía una solicitud DELETE al endpoint jobTriggers, como se muestra a continuación. Sustituye el campo [JOB-TRIGGER-NAME] por el nombre del activador de trabajo.

URL:

DELETE https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/jobTriggers/[JOB-TRIGGER-NAME]?key={YOUR_API_KEY}

Si la solicitud se ha realizado correctamente, la API DLP devolverá una respuesta de éxito. Para verificar que el activador de la tarea se ha eliminado correctamente, lista todos los activadores de tareas.

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Obtener una tarea

Para obtener un trabajo de tu proyecto, incluidos sus resultados, haz lo siguiente. Esta operación no afecta a los resultados guardados externamente (por ejemplo, en BigQuery).

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Cloud.Dlp.V2;
using System;

public class JobsGet
{
    public static DlpJob GetDlpJob(string jobName)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.GetDlpJob(jobName);

        Console.WriteLine($"Job: {response.Name} status: {response.State}");

        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// jobsGet gets an inspection job using jobName
func jobsGet(w io.Writer, projectID string, jobName string) error {
	// projectId := "my-project-id"
	// jobName := "your-job-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Construct the request to be sent by the client.
	req := &dlppb.GetDlpJobRequest{
		Name: jobName,
	}

	// Send the request.
	resp, err := client.GetDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Job Name: %v Job Status: %v", resp.Name, resp.State)
	return nil
}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DlpJobName;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import java.io.IOException;

public class JobsGet {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String jobId = "your-job-id";
    getJobs(projectId, jobId);
  }

  // Gets a DLP Job with the given jobId
  public static void getJobs(String projectId, String jobId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the complete job name from the projectId and jobId
      DlpJobName jobName = DlpJobName.of(projectId, jobId);

      // Construct the get job request to be sent by the client.
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(jobName.toString()).build();

      // Send the get job request
      dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job got successfully.");
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// Job name to look for
// const jobName = 'your-job-name';

async function getJob() {
  // Construct request for finding job using job name.
  const request = {
    name: jobName,
  };

  // Send the request and receive response from the service
  const [job] = await dlp.getDlpJob(request);

  // Print results.
  console.log(`Job ${job.name} status: ${job.state}`);
}

getJob();

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;

/**
 * Get DLP inspection job.
 * @param string $jobName           Dlp job name
 */
function get_job(
    string $jobName
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    try {
        // Send the get job request
        $getDlpJobRequest = (new GetDlpJobRequest())
            ->setName($jobName);
        $response = $dlp->getDlpJob($getDlpJobRequest);
        printf('Job %s status: %s' . PHP_EOL, $response->getName(), $response->getState());
    } finally {
        $dlp->close();
    }
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import google.cloud.dlp


def get_dlp_job(project: str, job_name: str) -> None:
    """Uses the Data Loss Prevention API to retrieve a DLP job.
    Args:
        project: The project id to use as a parent resource.
        job_name: The name of the DlpJob resource to be retrieved.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id and job name into a full resource id.
    job_name = f"projects/{project}/locations/global/dlpJobs/{job_name}"

    # Call the API
    response = dlp.get_dlp_job(request={"name": job_name})

    print(f"Job: {response.name} Status: {response.state}")

REST

Para obtener un trabajo del proyecto actual, envía una solicitud GET al endpoint dlpJobs, como se muestra aquí. Sustituye el campo [JOB-IDENTIFIER] por el identificador del trabajo, que empieza por i-.

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs/[JOB-IDENTIFIER]?key={YOUR_API_KEY}

Si la solicitud se ha realizado correctamente, la API DLP devolverá una respuesta de éxito.

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Forzar la ejecución inmediata de un activador de tarea

Una vez que se ha creado un activador de trabajo, puedes forzar una ejecución inmediata del activador para probarlo activándolo. Para ello, ejecuta el siguiente comando:

curl --request POST \
    -H "Content-Type: application/json" \
    -H "Accept: application/json" \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    'https://dlp.googleapis.com/v2/JOB_TRIGGER_NAME:activate'

Haz los cambios siguientes:

  • PROJECT_ID: el ID del Google Cloud proyecto al que se facturarán los cargos de acceso asociados a la solicitud.
  • JOB_TRIGGER_NAME: nombre completo del recurso del activador del trabajo (por ejemplo, projects/my-project/locations/global/jobTriggers/123456789).

Actualizar un activador de tarea

Además de crear, enumerar y eliminar activadores de tareas, también puedes actualizar un activador de tarea. Para cambiar la configuración de un activador de trabajo, sigue estos pasos:

Consola

  1. En la Google Cloud consola, ve a la página Protección de datos sensibles.

    Ir a Protección de Datos Sensibles

  2. Haz clic en la pestaña Inspección y, a continuación, en la subpestaña Activadores de trabajos.

    La consola muestra una lista de todos los activadores de trabajos del proyecto actual.

  3. En la columna Acciones del activador de trabajo que quieras eliminar, haz clic en Más y, a continuación, en Ver detalles.

  4. En la página de detalles del activador de la tarea, haz clic en Editar.

  5. En la página Editar activador, puede cambiar la ubicación de los datos de entrada, los detalles de detección (como plantillas, infoTipos o probabilidad), las acciones posteriores al análisis y la programación del activador de la tarea. Cuando hayas terminado de hacer los cambios, haz clic en Guardar.

C#

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;

public class TriggersUpdate
{
    public static JobTrigger UpdateJob(
        string projectId,
        string triggerId,
        IEnumerable<InfoType> infoTypes = null,
        Likelihood minLikelihood = Likelihood.Likely)
    {
        // Instantiate the client.
        var dlp = DlpServiceClient.Create();

        // Construct the update job trigger request object by providing the trigger name,
        // job trigger object which will specify the type of info to be inspected and
        // update mask object which specifies the field to be updated.
        // Refer to https://cloud.google.com/dlp/docs/reference/rest/v2/Container for specifying the paths in container object.
        var request = new UpdateJobTriggerRequest
        {
            JobTriggerName = new JobTriggerName(projectId, triggerId),
            JobTrigger = new JobTrigger
            {
                InspectJob = new InspectJobConfig
                {
                    InspectConfig = new InspectConfig
                    {
                        InfoTypes =
                        {
                            infoTypes ?? new InfoType[]
                            {
                                new InfoType { Name = "US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER" }
                            }
                        },
                        MinLikelihood = minLikelihood
                    }
                }
            },
            // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
            // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
            UpdateMask = new FieldMask
            {
                Paths =
                {
                    "inspect_job.inspect_config.info_types",
                    "inspect_job.inspect_config.min_likelihood"
                }
            }
        };

        // Call the API.
        JobTrigger response = dlp.UpdateJobTrigger(request);

        // Inspect the result.
        Console.WriteLine($"Job Trigger Name: {response.Name}");
        Console.WriteLine($"InfoType updated: {response.InspectJob.InspectConfig.InfoTypes[0]}");
        Console.WriteLine($"Likelihood updated: {response.InspectJob.InspectConfig.MinLikelihood}");
        return response;
    }
}

Go

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"google.golang.org/protobuf/types/known/fieldmaskpb"
)

// updateTrigger updates an existing job trigger in Google Cloud Data Loss Prevention (DLP).
// It modifies the configuration of the specified job trigger with the provided updated settings.
func updateTrigger(w io.Writer, jobTriggerName string) error {
	// jobTriggerName := "your-job-trigger-name" (projects/<projectID>/locations/global/jobTriggers/my-trigger)

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoType := &dlppb.InfoType{
		Name: "PERSON_NAME",
	}

	// Specify the inspectConfig that represents the configuration settings for inspecting sensitive data in
	// DLP API. It includes detection types, custom info types, inspection methods, and actions
	// to be taken on detection.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes: []*dlppb.InfoType{
			infoType,
		},
		MinLikelihood: dlppb.Likelihood_LIKELY,
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		InspectConfig: inspectConfig,
	}

	// Specify the jobTrigger that represents a DLP job trigger configuration.
	// It defines the conditions, actions, and schedule for executing inspections
	// on sensitive data in the specified data storage.
	jobTrigger := &dlppb.JobTrigger{
		Job: &dlppb.JobTrigger_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// fieldMask represents a set of fields to be included in an update operation.
	// It is used to specify which fields of a resource should be updated.
	updateMask := &fieldmaskpb.FieldMask{
		Paths: []string{"inspect_job.inspect_config.info_types", "inspect_job.inspect_config.min_likelihood"},
	}

	// Combine configurations into a request for the service.
	req := &dlppb.UpdateJobTriggerRequest{
		Name:       jobTriggerName,
		JobTrigger: jobTrigger,
		UpdateMask: updateMask,
	}

	// Send the scan request and process the response
	resp, err := client.UpdateJobTrigger(ctx, req)
	if err != nil {
		return err
	}

	// Print the result.
	fmt.Fprintf(w, "Successfully Updated trigger: %v", resp)
	return nil

}

Java

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.JobTriggerName;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.UpdateJobTriggerRequest;
import com.google.protobuf.FieldMask;
import java.io.IOException;

public class TriggersPatch {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.

    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The name of the job trigger to be updated.
    String jobTriggerName = "your-job-trigger-name";
    patchTrigger(projectId, jobTriggerName);
  }

  // Uses the Data Loss Prevention API to update an existing job trigger.
  public static void patchTrigger(String projectId, String jobTriggerName) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      InspectConfig inspectConfig = InspectConfig.newBuilder()
              .addInfoTypes(infoType)
              .setMinLikelihood(Likelihood.LIKELY)
              .build();

      InspectJobConfig inspectJobConfig = InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .build();

      JobTrigger jobTrigger = JobTrigger.newBuilder()
              .setInspectJob(inspectJobConfig)
              .build();

      // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
      // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
      FieldMask fieldMask = FieldMask.newBuilder()
              .addPaths("inspect_job.inspect_config.info_types")
              .addPaths("inspect_job.inspect_config.min_likelihood")
              .build();

      // Update the job trigger with the new configuration.
      UpdateJobTriggerRequest updateJobTriggerRequest = UpdateJobTriggerRequest.newBuilder()
              .setName(JobTriggerName.of(projectId, jobTriggerName).toString())
              .setJobTrigger(jobTrigger)
              .setUpdateMask(fieldMask)
              .build();

      // Call the API to update the job trigger.
      JobTrigger updatedJobTrigger = dlpServiceClient.updateJobTrigger(updateJobTriggerRequest);

      System.out.println("Job Trigger Name: " + updatedJobTrigger.getName());
      System.out.println(
          "InfoType updated: "
              + updatedJobTrigger.getInspectJob().getInspectConfig().getInfoTypes(0).getName());
      System.out.println(
          "Likelihood updated: "
              + updatedJobTrigger.getInspectJob().getInspectConfig().getMinLikelihood());
    }
  }
}

Node.js

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlpClient = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The job trigger ID to run the API call under
// const jobTriggerName = 'your-job-trigger-name';

async function updateTrigger() {
  // Construct inspect configuration to match PERSON_NAME infotype
  const inspectConfig = {
    infoTypes: [{name: 'PERSON_NAME'}],
    minLikelihood: 'LIKELY',
  };

  // Configure the job trigger we want to update.
  const jobTrigger = {inspectJob: {inspectConfig}};

  const updateMask = {
    paths: [
      'inspect_job.inspect_config.info_types',
      'inspect_job.inspect_config.min_likelihood',
    ],
  };

  // Combine configurations into a request for the service.
  const request = {
    name: `projects/${projectId}/jobTriggers/${jobTriggerName}`,
    jobTrigger,
    updateMask,
  };

  // Send the request and receive response from the service
  const [updatedJobTrigger] = await dlpClient.updateJobTrigger(request);

  // Print the results
  console.log(`Updated Trigger: ${JSON.stringify(updatedJobTrigger)}`);
}
updateTrigger(projectId, jobTriggerName);

PHP

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\JobTrigger;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\UpdateJobTriggerRequest;
use Google\Protobuf\FieldMask;

/**
 * Update an existing job trigger.
 *
 * @param string $callingProjectId  The Google Cloud Project ID to run the API call under.
 * @param string $jobTriggerName    The job trigger name to update.
 *
 */
function update_trigger(
    string $callingProjectId,
    string $jobTriggerName
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Configure the inspectConfig.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes([
            (new InfoType())
                ->setName('US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER')
        ])
        ->setMinLikelihood(Likelihood::LIKELY);

    // Configure the Job Trigger we want the service to perform.
    $jobTrigger = (new JobTrigger())
        ->setInspectJob((new InspectJobConfig())
            ->setInspectConfig($inspectConfig));

    // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
    // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
    $fieldMask = (new FieldMask())
        ->setPaths([
            'inspect_job.inspect_config.info_types',
            'inspect_job.inspect_config.min_likelihood'
        ]);

    // Send the update job trigger request and process the response.
    $name = "projects/$callingProjectId/locations/global/jobTriggers/" . $jobTriggerName;
    $updateJobTriggerRequest = (new UpdateJobTriggerRequest())
        ->setName($name)
        ->setJobTrigger($jobTrigger)
        ->setUpdateMask($fieldMask);

    $response = $dlp->updateJobTrigger($updateJobTriggerRequest);

    // Print results.
    printf('Successfully update trigger %s' . PHP_EOL, $response->getName());
}

Python

Para saber cómo instalar y usar la biblioteca de cliente de Protección de Datos Sensibles, consulta el artículo sobre las bibliotecas de cliente de Protección de Datos Sensibles.

Para autenticarte en Protección de Datos Sensibles, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from typing import List

import google.cloud.dlp


def update_trigger(
    project: str,
    info_types: List[str],
    trigger_id: str,
) -> None:
    """Uses the Data Loss Prevention API to update an existing job trigger.
    Args:
        project: The Google Cloud project id to use as a parent resource
        info_types: A list of strings representing infoTypes to update trigger with.
            A full list of infoType categories can be fetched from the API.
        trigger_id: The id of job trigger which needs to be updated.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Specify fields of the jobTrigger resource to be updated when the
    # job trigger is modified.
    job_trigger = {
        "inspect_job": {
            "inspect_config": {
                "info_types": info_types,
                "min_likelihood": google.cloud.dlp_v2.Likelihood.LIKELY,
            }
        }
    }

    # Convert the project id into a full resource id.
    trigger_name = f"projects/{project}/jobTriggers/{trigger_id}"

    # Call the API.
    # Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask
    # for constructing the field mask paths.
    response = dlp.update_job_trigger(
        request={
            "name": trigger_name,
            "job_trigger": job_trigger,
            "update_mask": {
                "paths": [
                    "inspect_job.inspect_config.info_types",
                    "inspect_job.inspect_config.min_likelihood",
                ]
            },
        }
    )

    # Print out the result.
    print(f"Successfully updated trigger: {response.name}")
    print(
        f"Updated InfoType: {response.inspect_job.inspect_config.info_types[0].name}"
        f" \nUpdates Likelihood: {response.inspect_job.inspect_config.min_likelihood}\n",
    )

REST

Usa el método projects.jobTriggers.patch para enviar nuevos valores de JobTrigger a la API DLP y actualizar esos valores en un activador de trabajo específico.

Por ejemplo, considera el siguiente activador de trabajo sencillo. Este JSON representa el activador de trabajo y se devolvió después de enviar una solicitud GET al endpoint del activador de trabajo del proyecto actual.

Salida JSON:

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://dlptesting/*"
        },
        "fileTypes":[
          "FILE_TYPE_UNSPECIFIED"
        ],
        "filesLimitPercent":100
      },
      "timespanConfig":{
        "enableAutoPopulationOfTimespanConfig":true
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"US_SOCIAL_SECURITY_NUMBER"
        }
      ],
      "minLikelihood":"POSSIBLE",
      "limits":{

      }
    },
    "actions":[
      {
        "jobNotificationEmails":{

        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2019-03-06T21:19:45.774841Z",
  "updateTime":"2019-03-06T21:19:45.774841Z",
  "status":"HEALTHY"
}

El siguiente JSON, cuando se envía con una solicitud PATCH al endpoint especificado, actualiza el activador de trabajo indicado con un nuevo infoType que buscar, así como una nueva probabilidad mínima. Tenga en cuenta que también debe especificar el atributo updateMask y que su valor debe tener el formato FieldMask.

Entrada JSON:

PATCH https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]?key={YOUR_API_KEY}

{
  "jobTrigger":{
    "inspectJob":{
      "inspectConfig":{
        "infoTypes":[
          {
            "name":"US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER"
          }
        ],
        "minLikelihood":"LIKELY"
      }
    }
  },
  "updateMask":"inspectJob(inspectConfig(infoTypes,minLikelihood))"
}

Después de enviar este JSON a la URL especificada, se devuelve lo siguiente, que representa el activador de trabajo actualizado. Ten en cuenta que los valores originales de infoType y likelihood se han sustituido por los nuevos.

Salida JSON:

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://dlptesting/*"
        },
        "fileTypes":[
          "FILE_TYPE_UNSPECIFIED"
        ],
        "filesLimitPercent":100
      },
      "timespanConfig":{
        "enableAutoPopulationOfTimespanConfig":true
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER"
        }
      ],
      "minLikelihood":"LIKELY",
      "limits":{

      }
    },
    "actions":[
      {
        "jobNotificationEmails":{

        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2019-03-06T21:19:45.774841Z",
  "updateTime":"2019-03-06T21:27:01.650183Z",
  "lastRunTime":"1970-01-01T00:00:00Z",
  "status":"HEALTHY"
}

Para probarlo rápidamente, puedes usar el Explorador de APIs que se incluye más abajo. Para obtener información general sobre cómo usar JSON para enviar solicitudes a la API DLP, consulta la guía de inicio rápido de JSON.

Latencia de las tareas

No se garantiza ningún objetivo de nivel de servicio para los trabajos ni los activadores de trabajos. La latencia se ve afectada por varios factores, como la cantidad de datos que se van a analizar, el repositorio de almacenamiento que se va a analizar, el tipo y el número de infoTypes que se van a buscar, la región en la que se procesa el trabajo y los recursos de computación disponibles en esa región. Por lo tanto, la latencia de las tareas de inspección no se puede determinar de antemano.

Para reducir la latencia de los trabajos, puedes probar lo siguiente:

  • Si el muestreo está disponible para tu tarea o activador de tareas, habilítalo.
  • Evita habilitar infoTypes que no necesites. Aunque los siguientes tipos de información son útiles en determinados casos, pueden hacer que las solicitudes se ejecuten mucho más lentamente que las que no los incluyen:

    • PERSON_NAME
    • FEMALE_NAME
    • MALE_NAME
    • FIRST_NAME
    • LAST_NAME
    • DATE_OF_BIRTH
    • LOCATION
    • STREET_ADDRESS
    • ORGANIZATION_NAME
  • Especifica siempre los infoTypes de forma explícita. No utilices una lista infoTypes vacía.

  • Si es posible, usa otra región de procesamiento.

Si sigues teniendo problemas de latencia con los trabajos después de probar estas técnicas, considera la posibilidad de usar solicitudes content.inspect o content.deidentify en lugar de trabajos. Estos métodos se rigen por el Acuerdo de Nivel de Servicio. Para obtener más información, consulta el acuerdo de nivel de servicio de Protección de Datos Sensibles.

Limitar el análisis solo al contenido nuevo

Puedes configurar el activador de la tarea para que defina automáticamente la fecha del periodo de los archivos almacenados en Cloud Storage o BigQuery. Cuando asignas el valor de autocompletar al objeto TimespanConfig, Protección de Datos Sensibles solo analiza los datos que se han añadido o modificado desde la última vez que se activó el activador:

...
  timespan_config {
        enable_auto_population_of_timespan_config: true
      }
...

En el caso de la inspección de BigQuery, solo se incluyen en el análisis las filas que tengan al menos tres horas. Consulta el problema conocido relacionado con esta operación.

Activar tareas al subir archivos

Además de la compatibilidad con los activadores de tareas, que está integrada en Protección de Datos Sensibles,Google Cloud también tiene otros componentes que puedes usar para integrar o activar tareas de Protección de Datos Sensibles. Por ejemplo, puedes usar Cloud Run Functions para activar un análisis de Protección de Datos Sensibles cada vez que se suba un archivo a Cloud Storage.

Para obtener información sobre cómo configurar esta operación, consulta el artículo Automatizar la clasificación de datos subidos a Cloud Storage.

Tareas completadas correctamente sin datos inspeccionados

Un trabajo puede completarse correctamente aunque no se haya analizado ningún dato. Los siguientes ejemplos pueden provocar que esto ocurra:

  • La tarea está configurada para inspeccionar un recurso de datos específico, como un archivo, que existe pero está vacío.
  • El trabajo está configurado para inspeccionar un recurso de datos que no existe o que ya no existe.
  • La tarea está configurada para inspeccionar un segmento de Cloud Storage que está vacío.
  • La tarea está configurada para inspeccionar un segmento y el análisis recursivo está inhabilitado. En el nivel superior, el segmento solo contiene carpetas que, a su vez, contienen los archivos.
  • El trabajo está configurado para inspeccionar solo un tipo de archivo específico en un contenedor, pero el contenedor no tiene ningún archivo de ese tipo.
  • El trabajo está configurado para inspeccionar solo el contenido nuevo, pero no ha habido actualizaciones desde la última vez que se ejecutó.

En la Google Cloud consola, en la página Detalles del trabajo, el campo Bytes analizados especifica la cantidad de datos que ha inspeccionado el trabajo. En la API DLP, el campo processedBytes especifica la cantidad de datos que se han inspeccionado.

Siguientes pasos