Sensitive Data Protection uses information types—or infoTypes—to define what it scans for. An infoType is a type of sensitive data, such as a name, email address, telephone number, identification number, credit card number, and so on.
Every infoType defined in Sensitive Data Protection has a corresponding detector. Sensitive Data Protection uses infoType detectors in the configuration for its scans to determine what to inspect for and how to transform findings. InfoType names are also used when displaying or reporting scan results.
This topic describes infoTypes and infoType detectors in detail, and provides guidance for how to use infoType detectors when scanning content for sensitive data using Sensitive Data Protection.
Specifying infoType detectors
When you set up Sensitive Data Protection to scan your content, you include the infoType detectors to use in the scan configuration.
For example, the following JSON demonstrates a simple scan request to the
DLP API. Notice that the PHONE_NUMBER
detector is specified in
inspectConfig
,
which instructs Sensitive Data Protection to scan the given string for a
phone number.
POST https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/content:inspect?key={YOUR_API_KEY}
{
"item":{
"value":"My phone number is (415) 555-0890"
},
"inspectConfig":{
"includeQuote":true,
"minLikelihood":"POSSIBLE",
"infoTypes":{
"name":"PHONE_NUMBER"
}
}
}
The preceding request returns the following:
{
"result":{
"findings":[
{
"quote":"(415) 555-0890",
"infoType":{
"name":"PHONE_NUMBER"
},
"likelihood":"VERY_LIKELY",
"location":{
"byteRange":{
"start":"19",
"end":"33"
},
"codepointRange":{
"start":"19",
"end":"33"
}
},
"createTime":"2018-10-29T23:46:34.535Z"
}
]
}
}
Always specify infoTypes in your scan configuration. If you don't specify any infoTypes, Sensitive Data Protection uses a default infoTypes list. Depending on the amount of content to scan, scanning for default infoTypes can be prohibitively time-consuming or expensive.
For more information on how to use infoType detectors to scan your content, see one of the how-to topics about inspecting, redacting, or de-identifying.
Kinds of infoType detectors
Information type (or "infoType") detectors are the mechanisms that Sensitive Data Protection uses to find sensitive data.
Sensitive Data Protection includes several kinds of infoType detectors, all of which are summarized here:
- Built-in infoType detectors are built into Sensitive Data Protection. They include detectors for country- or region-specific sensitive data types as well as globally applicable data types.
- Custom infoType detectors are detectors that you create
yourself. There are three kinds of custom infoType detectors:
- Regular custom dictionary detectors are simple word lists that Sensitive Data Protection matches on. Use regular custom dictionary detectors when you have a list of up to several tens of thousands of words or phrases. Regular custom dictionary detectors are preferred if you don't anticipate your word list changing significantly.
- Stored custom dictionary detectors are generated by Sensitive Data Protection using large lists of words or phrases stored in either Cloud Storage or BigQuery. Use stored custom dictionary detectors when you have a large list of words or phrases—up to tens of millions.
- Regular expressions (regex) detectors enable Sensitive Data Protection to detect matches based on a regular expression pattern.
In addition, Sensitive Data Protection includes the concept of inspection rules, which enable you to fine-tune scan results using the following:
- Exclusion rules enable you to decrease the number of findings returned by adding rules to a built-in or custom infoType detector.
- Hotword rules enable you to increase the quantity or change the likelihood value of findings returned by adding rules to a built-in or custom infoType detector.
Built-in infoType detectors
Built-in infoType detectors are built into Sensitive Data Protection, and
include detectors for country- or region-specific sensitive data types such as
the French Numéro d'Inscription au Répertoire (NIR) (FRANCE_NIR
), UK
driver's license number (UK_DRIVERS_LICENSE_NUMBER
), and US Social Security
number (US_SOCIAL_SECURITY_NUMBER
). They also include globally applicable data
types such as a person name (PERSON_NAME
), telephone numbers (PHONE_NUMBER
),
email addresses (EMAIL_ADDRESS
), and credit card numbers
(CREDIT_CARD_NUMBER
).To detect content that corresponds to infoTypes,
Sensitive Data Protection leverages various techniques including pattern
matching, checksums, machine-learning, context analysis, and others.
The list of built-in infoType detectors is always being updated. For a complete list of currently supported built-in infoType detectors, see InfoType detector reference.
You can also view a complete list of all built-in infoType detectors by
calling Sensitive Data Protection's
infoTypes.list
method.
Custom infoType detectors
There are three kinds of custom infoType detectors:
In addition, Sensitive Data Protection includes inspection rules, which enable you to fine-tune scan results by adding the following to existing detectors:
Regular custom dictionary detectors
Use regular custom dictionary detectors to match a short (up to several tens of thousands) list of words or phrases. A regular custom dictionary can act as its own unique detector.
Custom dictionary detectors are useful when you want to scan for a list of words or phrases that are not easily matched by a regular expression or a built-in detector. For example, suppose you want to scan for conference rooms that are commonly referred to by their assigned room names rather than their room numbers, such as state or region names, landmarks, fictional characters, and so on. You can make a regular custom dictionary detector that contains a list of these room names. Sensitive Data Protection can scan your content for each of the room names and return a match when it encounters one of them in context. Learn more about how Sensitive Data Protection matches dictionary words and phrases in the "Dictionary matching specifics" section of Creating a Regular Custom Dictionary Detector.
For more details about how regular dictionary custom infoType detectors work, as well as examples in action, see Creating a Regular Custom Dictionary Detector.
Stored custom dictionary detectors
Use stored custom dictionary detectors when you have more than a few words or phrases to scan for, or if your list of words or phrases changes frequently. Stored custom dictionary detectors can match on up to tens of millions of words or phrases.
Stored custom dictionary detectors, by their nature as very large custom detectors, are created differently from both regular expression custom detectors and regular custom dictionary detectors. Each stored custom dictionary has two components:
- A list of phrases that you create and define. The list is stored as either a text file within Cloud Storage or a column in a BigQuery table.
- The generated dictionary files, which are built by Sensitive Data Protection based on your phrase list. The dictionary files are stored in Cloud Storage, and are comprised of a copy of the source phrase data plus bloom filters, which aid in searching and matching. You can't edit these files directly.
Once you've created a word list and then used Sensitive Data Protection to generate a custom dictionary, you initiate or schedule a scan using a stored custom dictionary detector in a similar way as other infoType detectors.
For more details about how stored custom dictionary detectors work, as well as examples in action, see Creating a Stored Custom Dictionary Detector.
Regular expressions
A regular expression (regex) custom infoType detector allows you to create your
own infoType detectors that enable Sensitive Data Protection to detect
matches based on a regex pattern. For example, suppose that you had medical
record numbers in the form ###-#-#####
. You could define a regex pattern such
as the following:
[1-9]{3}-[1-9]{1}-[1-9]{5}
The Sensitive Data Protection would then match items like this:
123-4-56789
You can also specify a likelihood to assign to each
custom infoType match. That is, when Sensitive Data Protection matches the
sequence you specify, it will assign the likelihood that you have indicated.
This is useful because if your custom regex defines a sequence that is common
enough it could easily match some other random sequence, you would not want
Sensitive Data Protection to label every match as VERY_LIKELY
. Doing so would
erode confidence in scan results and potentially cause the wrong information to
be de-identified.
For more information about regular expression custom infoType detectors, and to see them in action, see Creating a Custom Regex Detector.
Inspection rules
You use inspection rules to refine the results returned by existing infoType detectors—either built-in or custom. Inspection rules can be useful for times when the results that Sensitive Data Protection returns need to be augmented in some way, either by adding to and excluding from the existing infoType detector.
The two types of inspection rules are:
- Exclusion rules
- Hotword rules
For more information about inspection rules, see Modifying InfoType Detectors to Refine Scan Results.
Exclusion rules
Exclusion rules enable you to decrease the quantity or precision of findings returned by adding rules to a built-in or custom infoType detector. Exclusion rules can help you reduce noise or other unwanted findings from being returned by an infoType detector.
For example, if you scan a database for email addresses, you can add an exclusion rule in the form of a custom regex that instructs Sensitive Data Protection to exclude any findings ending in "@example.com."
For more information about exclusion rules, see Modifying InfoType Detectors to Refine Scan Results.
Hotword rules
Hotword rules enable you to increase the quantity or accuracy of findings returned by adding rules to a built-in or custom infoType detector. Hotword rules can effectively help you loosen an existing infoType detector's rules.
For example, suppose you want to scan a medical database for patient names. You
can use Sensitive Data Protection's built-in PERSON_NAME
infoType
detector, but that will cause Sensitive Data Protection to match on all
names of people, not just names of patients. To fix this, you can include a
hotword rule in the form of a regex custom infoType that looks for the word
"patient" within a certain character proximity from the first character of
potential matches. You can then assign findings matching this pattern a
likelihood of "very likely," since they correspond to
your special criteria.
For more information about hotword rules, see Modifying InfoType Detectors to Refine Scan Results.