- 1.29.0 (latest)
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
DataFrame(
data=None,
index: vendored_pandas_typing.Axes | None = None,
columns: vendored_pandas_typing.Axes | None = None,
dtype: typing.Optional[
bigframes.dtypes.DtypeString | bigframes.dtypes.Dtype
] = None,
copy: typing.Optional[bool] = None,
*,
session: typing.Optional[bigframes.session.Session] = None
)
Two-dimensional, size-mutable, potentially heterogeneous tabular data.
Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
Properties
axes
Return a list representing the axes of the DataFrame.
It has the row axis labels and column axis labels as the only members. They are returned in that order.
Examples
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df.axes
[RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'],
dtype='object')]
columns
The column labels of the DataFrame.
dtypes
Return the dtypes in the DataFrame.
This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types aren't supported yet in BigQuery DataFrames.
empty
Indicates whether Series/DataFrame is empty.
True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.
Returns | |
---|---|
Type | Description |
bool | If Series/DataFrame is empty, return True, if not return False. |
iloc
Purely integer-location based indexing for selection by position.
.iloc[]
is primarily integer position based (from 0
to
length-1
of the axis), but may also be used with a boolean
array.
Allowed inputs are:
- Not supported yet An integer, e.g.
5
. - Not supported yet A list or array of integers, e.g.
[4, 3, 0]
. - A slice object with ints, e.g.
1:7
. - Not supported yet A boolean array.
- Not supported yet A
callable
function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. - Not supported yet A tuple of row and column indexes. The tuple
elements consist of one of the above inputs, e.g.
(0, 1)
.
.iloc
will raise IndexError
if a requested indexer is
out-of-bounds, except slice indexers which allow out-of-bounds
indexing (this conforms with python/numpy slice semantics).
index
The index (row labels) of the DataFrame.
The index of a DataFrame is a series of labels that identify each row. The labels can be integers, strings, or any other hashable type. The index is used for label-based access and alignment, and can be accessed or modified using this attribute.
loc
Access a group of rows and columns by label(s) or a boolean array.
.loc[]
is primarily label based, but may also be used with a
boolean array.
Allowed inputs are:
- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index, and never as an integer position along the index). - A list of labels, e.g.
['a', 'b', 'c']
. - A boolean series of the same length as the axis being sliced,
e.g.
[True, False, True]
. - An alignable Index. The index of the returned selection will be the input.
- Not supported yet An alignable boolean Series. The index of the key will be aligned before masking.
- Not supported yet A slice object with labels, e.g.
'a':'f'
. Note: contrary to usual python slices, both the start and the stop are included. - Not supported yet A
callable
function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above).
Exceptions | |
---|---|
Type | Description |
NotImplementError | if the inputs are not supported. |
ndim
Return an int representing the number of axes / array dimensions.
Returns | |
---|---|
Type | Description |
int | Return 1 if Series. Otherwise return 2 if DataFrame. |
query_job
BigQuery job metadata for the most recent query.
shape
Return a tuple representing the dimensionality of the DataFrame.
size
Return an int representing the number of elements in this object.
Returns | |
---|---|
Type | Description |
int | Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. |
sql
Compiles this DataFrame's expression tree to SQL.
values
Return the values of DataFrame in the form of a NumPy array.
Methods
__array_ufunc__
__array_ufunc__(
ufunc: numpy.ufunc, method: str, *inputs, **kwargs
) -> bigframes.dataframe.DataFrame
Used to support numpy ufuncs. See: https://numpy.org/doc/stable/reference/ufuncs.html
__getitem__
__getitem__(
key: typing.Union[
typing.Hashable,
typing.Sequence[typing.Hashable],
pandas.core.indexes.base.Index,
bigframes.series.Series,
]
)
Gets the specified column(s) from the DataFrame.
__repr__
__repr__() -> str
Converts a DataFrame to a string. Calls compute.
Only represents the first <xref uid="bigframes.options">bigframes.options</xref>.display.max_rows
.
__setitem__
__setitem__(
key: str, value: typing.Union[bigframes.series.Series, int, float, typing.Callable]
)
Modify or insert a column into the DataFrame.
Note: This does not modify the original table the DataFrame was derived from.
abs
abs() -> bigframes.dataframe.DataFrame
Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
add
add(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get addition of DataFrame and other, element-wise (binary operator +
).
Equivalent to dataframe + other
. With reverse version, radd
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
add_prefix
add_prefix(prefix: str, axis: int | str | None = None) -> DataFrame
Prefix labels with string prefix
.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
Parameters | |
---|---|
Name | Description |
prefix |
str
The string to add before each label. |
axis |
int or str or None, default None
|
add_suffix
add_suffix(suffix: str, axis: int | str | None = None) -> DataFrame
Suffix labels with string suffix
.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
agg
agg(func: str | typing.Sequence[str]) -> DataFrame | bigframes.series.Series
Aggregate using one or more operations over the specified axis.
Parameter | |
---|---|
Name | Description |
func |
function
Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. |
Returns | |
---|---|
Type | Description |
DataFrame or bigframes.series.Series | Aggregated results. |
aggregate
aggregate(func: str | typing.Sequence[str]) -> DataFrame | bigframes.series.Series
Aggregate using one or more operations over the specified axis.
Parameter | |
---|---|
Name | Description |
func |
function
Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. |
Returns | |
---|---|
Type | Description |
DataFrame or bigframes.series.Series | Aggregated results. |
all
all(*, bool_only: bool = False) -> bigframes.series.Series
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a Series or along a DataFrame axis that is False or equivalent (e.g. zero or empty).
Parameter | |
---|---|
Name | Description |
bool_only |
bool. default False
Include only boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series if all elements are True. |
any
any(*, bool_only: bool = False) -> bigframes.series.Series
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
Parameter | |
---|---|
Name | Description |
bool_only |
bool. default False
Include only boolean columns. |
applymap
applymap(
func, na_action: typing.Optional[str] = None
) -> bigframes.dataframe.DataFrame
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
Parameter | |
---|---|
Name | Description |
na_action |
Optional[str], default None
|
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Transformed DataFrame. |
assign
assign(**kwargs) -> bigframes.dataframe.DataFrame
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | A new DataFrame with the new columns in addition to all the existing columns. |
astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.arrays.arrow.dtype.ArrowDtype,
]
) -> bigframes.dataframe.DataFrame
Cast a pandas object to a specified dtype dtype
.
Parameter | |
---|---|
Name | Description |
dtype |
str or pandas.ExtensionDtype
A dtype supported by BigQuery DataFrame include 'boolean','Float64','Int64', 'string', 'tring[pyarrow]','timestamp[us, tz=UTC][pyarrow]', 'timestamp |
copy
copy() -> bigframes.dataframe.DataFrame
Make a copy of this object's indices and data.
A new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object.
count
count(*, numeric_only: bool = False) -> bigframes.series.Series
Count non-NA cells for each column or row.
The values None
, NaN
, NaT
, and optionally numpy.inf
(depending
on pandas.options.mode.use_inf_as_na
) are considered NA.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool, default False
Include only |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame . |
cummax
cummax() -> bigframes.dataframe.DataFrame
Return cumulative maximum over a DataFrame axis.
Returns a DataFrame of the same size containing the cumulative maximum.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Return cumulative maximum of DataFrame. |
cummin
cummin() -> bigframes.dataframe.DataFrame
Return cumulative minimum over a DataFrame axis.
Returns a DataFrame of the same size containing the cumulative minimum.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Return cumulative minimum of DataFrame. |
cumprod
cumprod() -> bigframes.dataframe.DataFrame
Return cumulative product over a DataFrame axis.
Returns a DataFrame of the same size containing the cumulative product.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Return cumulative product of DataFrame. |
cumsum
cumsum()
Return cumulative sum over a DataFrame axis.
Returns a DataFrame of the same size containing the cumulative sum.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Return cumulative sum of DataFrame. |
describe
describe() -> bigframes.dataframe.DataFrame
Generate descriptive statistics.
Descriptive statistics include those that summarize the central
tendency, dispersion and shape of a
dataset's distribution, excluding NaN
values.
Only supports numeric columns.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Summary statistics of the Series or Dataframe provided. |
div
div(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
Equivalent to dataframe / other
. With reverse version, rtruediv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
divide
divide(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
Equivalent to dataframe / other
. With reverse version, rtruediv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
drop
drop(
labels: typing.Optional[typing.Any] = None,
*,
axis: typing.Union[int, str] = 0,
index: typing.Optional[typing.Any] = None,
columns: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
level: typing.Optional[typing.Union[str, int]] = None
) -> bigframes.dataframe.DataFrame
Drop specified labels from columns.
Remove columns by directly specifying column names.
Exceptions | |
---|---|
Type | Description |
KeyError | If any of the labels is not found in the selected axis. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame without the removed column labels. |
drop_duplicates
drop_duplicates(
subset: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
*,
keep: str = "first"
) -> bigframes.dataframe.DataFrame
Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexes are ignored.
Parameters | |
---|---|
Name | Description |
subset |
column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns. |
keep |
{'first', 'last',
Determines which duplicates (if any) to keep. - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame with duplicates removed |
droplevel
droplevel(level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]])
Return DataFrame with requested index / column level(s) removed.
Parameter | |
---|---|
Name | Description |
level |
int, str, or list-like
If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame with requested index / column level(s) removed. |
dropna
dropna() -> bigframes.dataframe.DataFrame
Remove missing values.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame with NA entries dropped from it. |
duplicated
duplicated(subset=None, keep: str = "first") -> bigframes.series.Series
Return boolean Series denoting duplicate rows.
Considering certain columns is optional.
Parameters | |
---|---|
Name | Description |
subset |
column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns. |
keep |
{'first', 'last', False}, default 'first'
Determines which duplicates (if any) to mark. - |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Boolean series for each duplicated rows. |
eq
eq(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get equal to of DataFrame and other, element-wise (binary operator eq
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
floordiv
floordiv(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get integer division of DataFrame and other, element-wise (binary operator //
).
Equivalent to dataframe // other
. With reverse version, rfloordiv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
ge
ge(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >=
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame of bool. The result of the comparison. |
get
get(key, default=None)
Get item from object for given key (ex: DataFrame column).
Returns default value if not found.
groupby
groupby(
by: typing.Optional[
typing.Union[
typing.Hashable,
bigframes.series.Series,
typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]],
]
] = None,
*,
level: typing.Optional[
typing.Union[str, int, typing.Sequence[typing.Union[str, int]]]
] = None,
as_index: bool = True,
dropna: bool = True
) -> bigframes.core.groupby.DataFrameGroupBy
Group DataFrame by columns.
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
Parameters | |
---|---|
Name | Description |
by |
str, Sequence[str]
A label or list of labels may be passed to group by the columns in |
level |
int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both |
as_index |
bool, default True
Default True. Return object with group labels as the index. Only relevant for DataFrame input. |
dropna |
bool, default True
Default True. If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups. |
Returns | |
---|---|
Type | Description |
bigframes.core.groupby.SeriesGroupBy | A groupby object that contains information about the groups. |
gt
gt(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get 'greater than' of DataFrame and other, element-wise (binary operator >
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame of bool: The result of the comparison. |
head
head(n: int = 5) -> bigframes.dataframe.DataFrame
Return the first n
rows.
This function returns the first n
rows for the object based
on position. It is useful for quickly testing if your object
has the right type of data in it.
Not yet supported For negative values of n
, this function returns
all rows except the last |n|
rows, equivalent to df[:n]
.
If n is larger than the number of rows, this function returns all rows.
Parameter | |
---|---|
Name | Description |
n |
int, default 5
Default 5. Number of rows to select. |
isna
isna() -> bigframes.dataframe.DataFrame
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.
NA values get mapped to True values. Everything else gets mapped to
False values. Characters such as empty strings ''
or
numpy.inf
are not considered NA values.
isnull
isnull() -> bigframes.dataframe.DataFrame
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.
NA values get mapped to True values. Everything else gets mapped to
False values. Characters such as empty strings ''
or
numpy.inf
are not considered NA values.
join
join(
other: bigframes.dataframe.DataFrame,
*,
on: typing.Optional[str] = None,
how: str = "left"
) -> bigframes.dataframe.DataFrame
Join columns of another DataFrame.
Join columns with other
DataFrame on index
Parameter | |
---|---|
Name | Description |
how |
{'left', 'right', 'outer', 'inner'}, default 'left'`
How to handle the operation of the two objects. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | A dataframe containing columns from both the caller and other . |
le
le(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get 'less than or equal to' of dataframe and other, element-wise (binary operator <=
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame of bool. The result of the comparison. |
lt
lt(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get 'less than' of DataFrame and other, element-wise (binary operator <
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame of bool. The result of the comparison. |
map
map(func, na_action: typing.Optional[str] = None) -> bigframes.dataframe.DataFrame
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
Parameter | |
---|---|
Name | Description |
na_action |
Optional[str], default None
|
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Transformed DataFrame. |
max
max(*, numeric_only: bool = False) -> bigframes.series.Series
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use idxmax
. This is
the equivalent of the numpy.ndarray
method argmax
.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series after the maximum of values. |
mean
mean(*, numeric_only: bool = False) -> bigframes.series.Series
Return the mean of the values over the requested axis.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the mean of values. |
median
median(
*, numeric_only: bool = False, exact: bool = False
) -> bigframes.series.Series
Return the median of the values over the requested axis.
Parameters | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
exact |
bool. default False
Default False. Get the exact median instead of an approximate one. Note: |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the median of values. |
merge
merge(
right: bigframes.dataframe.DataFrame,
how: typing.Literal["inner", "left", "outer", "right"] = "inner",
on: typing.Optional[str] = None,
*,
left_on: typing.Optional[str] = None,
right_on: typing.Optional[str] = None,
sort: bool = False,
suffixes: tuple[str, str] = ("_x", "_y")
) -> bigframes.dataframe.DataFrame
Merge DataFrame objects with a database-style join.
The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | A DataFrame of the two merged objects. |
min
min(*, numeric_only: bool = False) -> bigframes.series.Series
Return the minimum of the values over the requested axis.
If you want the index of the minimum, use idxmin
. This is the
equivalent of the numpy.ndarray
method argmin
.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool, default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the minimum of the values. |
mod
mod(other: int | bigframes.series.Series, axis: str | int = "columns") -> DataFrame
Get modulo of DataFrame and other, element-wise (binary operator %
).
Equivalent to dataframe % other
. With reverse version, rmod
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameter | |
---|---|
Name | Description |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
mul
mul(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get multiplication of DataFrame and other, element-wise (binary operator *
).
Equivalent to dataframe * other
. With reverse version, rmul
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
multiply
multiply(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get multiplication of DataFrame and other, element-wise (binary operator *
).
Equivalent to dataframe * other
. With reverse version, rmul
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
ne
ne(other: typing.Any, axis: str | int = "columns") -> DataFrame
Get not equal to of DataFrame and other, element-wise (binary operator ne
).
Among flexible wrappers (eq
, ne
, le
, lt
, ge
, gt
) to comparison
operators.
Equivalent to ==
, !=
, <=
, <
, >=
, >
with support to choose axis
(rows or columns) and level for comparison.
Parameters | |
---|---|
Name | Description |
other |
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
Returns | |
---|---|
Type | Description |
DataFrame | Result of the comparison. |
notna
notna() -> bigframes.dataframe.DataFrame
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ''
or numpy.inf
are not considered NA values.
NA values get mapped to False values.
Returns | |
---|---|
Type | Description |
NDFrame | Mask of bool values for each element that indicates whether an element is not an NA value. |
notnull
notnull() -> bigframes.dataframe.DataFrame
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ''
or numpy.inf
are not considered NA values.
NA values get mapped to False values.
Returns | |
---|---|
Type | Description |
NDFrame | Mask of bool values for each element that indicates whether an element is not an NA value. |
nunique
nunique() -> bigframes.series.Series
Count number of distinct elements in specified axis.
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with number of distinct elements. |
pivot
pivot(
*,
columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
index: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
values: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None
) -> bigframes.dataframe.DataFrame
Return reshaped DataFrame organized by given index / column values.
Reshape data (produce a "pivot" table) based on column values. Uses
unique values from specified index
/ columns
to form axes of the
resulting DataFrame. This function does not support data
aggregation, multiple values will result in a MultiIndex in the
columns.
Parameters | |
---|---|
Name | Description |
columns |
str or object or a list of str
Column to use to make new frame's columns. |
index |
str or object or a list of str, optional
Column to use to make new frame's index. If not given, uses existing index. |
values |
str, object or a list of the previous, optional
Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. |
prod
prod(*, numeric_only: bool = False) -> bigframes.series.Series
Return the product of the values over the requested axis.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the product of the values. |
product
product(*, numeric_only: bool = False) -> bigframes.series.Series
Return the product of the values over the requested axis.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the product of the values. |
radd
radd(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get addition of DataFrame and other, element-wise (binary operator +
).
Equivalent to dataframe + other
. With reverse version, radd
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
rank
rank(
axis=0,
method: str = "average",
numeric_only=False,
na_option: str = "keep",
ascending=True,
) -> bigframes.dataframe.DataFrame
Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the ranks of those values.
Parameters | |
---|---|
Name | Description |
method |
{'average', 'min', 'max', 'first', 'dense'}, default 'average'
How to rank the group of records that have the same value (i.e. ties): |
numeric_only |
bool, default False
For DataFrame objects, rank only numeric columns if set to True. |
na_option |
{'keep', 'top', 'bottom'}, default 'keep'
How to rank NaN values: |
ascending |
bool, default True
Whether or not the elements should be ranked in ascending order. |
Returns | |
---|---|
Type | Description |
same type as caller | Return a Series or DataFrame with data ranks as values. |
rdiv
rdiv(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
Equivalent to other / dataframe
. With reverse version, truediv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
rename
rename(
*, columns: typing.Mapping[typing.Hashable, typing.Hashable]
) -> bigframes.dataframe.DataFrame
Rename columns.
Dict values must be unique (1-to-1). Labels not contained in a dict will be left as-is. Extra labels listed don't throw an error.
Parameter | |
---|---|
Name | Description |
columns |
Mapping
Dict-like from old column labels to new column labels. |
Exceptions | |
---|---|
Type | Description |
KeyError | If any of the labels is not found. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame with the renamed axis labels. |
rename_axis
rename_axis(
mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], **kwargs
) -> bigframes.dataframe.DataFrame
Set the name of the axis for the index.
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame with the new index name |
reorder_levels
reorder_levels(
order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]]
)
Rearrange index levels using input order. May not drop or duplicate levels.
Parameter | |
---|---|
Name | Description |
order |
list of int or list of str
List representing new level order. Reference level by number (position) or by key (label). |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame of rearranged index. |
reset_index
reset_index(*, drop: bool = False) -> bigframes.dataframe.DataFrame
Reset the index.
Reset the index of the DataFrame, and use the default one instead.
Parameter | |
---|---|
Name | Description |
drop |
bool, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame with the new index. |
rfloordiv
rfloordiv(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get integer division of DataFrame and other, element-wise (binary operator //
).
Equivalent to other // dataframe
. With reverse version, rfloordiv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
rmod
rmod(
other: int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get modulo of DataFrame and other, element-wise (binary operator %
).
Equivalent to other % dataframe
. With reverse version, mod
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
rmul
rmul(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get multiplication of DataFrame and other, element-wise (binary operator *
).
Equivalent to dataframe * other
. With reverse version, rmul
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
rsub
rsub(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get subtraction of DataFrame and other, element-wise (binary operator -
).
Equivalent to other - dataframe
. With reverse version, sub
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
rtruediv
rtruediv(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
Equivalent to other / dataframe
. With reverse version, truediv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
sample
sample(
n: typing.Optional[int] = None,
frac: typing.Optional[float] = None,
*,
random_state: typing.Optional[int] = None
) -> bigframes.dataframe.DataFrame
Return a random sample of items from an axis of object.
You can use random_state
for reproducibility.
Parameters | |
---|---|
Name | Description |
n |
Optional[int], default None
Number of items from axis to return. Cannot be used with |
frac |
Optional[float], default None
Fraction of axis items to return. Cannot be used with |
random_state |
Optional[int], default None
Seed for random number generator. |
set_index
set_index(
keys: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
append: bool = False,
drop: bool = True,
) -> bigframes.dataframe.DataFrame
Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one existing column. The index can replace the existing index.
Returns | |
---|---|
Type | Description |
DataFrame | Changed row labels. |
shift
shift(periods: int = 1) -> bigframes.dataframe.DataFrame
Shift index by desired number of periods.
Shifts the index without realigning the data.
Returns | |
---|---|
Type | Description |
NDFrame | Copy of input object, shifted. |
sort_index
sort_index(
ascending: bool = True, na_position: typing.Literal["first", "last"] = "last"
) -> bigframes.dataframe.DataFrame
Sort object by labels (along an axis).
sort_values
sort_values(
by: str | typing.Sequence[str],
*,
ascending: bool | typing.Sequence[bool] = True,
kind: str = "quicksort",
na_position: typing.Literal["first", "last"] = "last"
) -> DataFrame
Sort by the values along row axis.
Parameters | |
---|---|
Name | Description |
by |
str or Sequence[str]
Name or list of names to sort by. |
ascending |
bool or Sequence[bool], default True
Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. |
kind |
str, default
Choice of sorting algorithm. Accepts 'quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’. Ignored except when determining whether to sort stably. 'mergesort' or 'stable' will result in stable reorder. |
na_position |
{'first', 'last'}, default
|
std
std(*, numeric_only: bool = False) -> bigframes.series.Series
Return sample standard deviation over requested axis.
Normalized by N-1 by default.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with sample standard deviation. |
sub
sub(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get subtraction of DataFrame and other, element-wise (binary operator -
).
Equivalent to dataframe - other
. With reverse version, rsub
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
subtract
subtract(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get subtraction of DataFrame and other, element-wise (binary operator -
).
Equivalent to dataframe - other
. With reverse version, rsub
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
sum
sum(*, numeric_only: bool = False) -> bigframes.series.Series
Return the sum of the values over the requested axis.
This is equivalent to the method numpy.sum
.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with the sum of values. |
tail
tail(n: int = 5) -> bigframes.dataframe.DataFrame
Return the last n
rows.
This function returns last n
rows from the object based on
position. It is useful for quickly verifying data, for example,
after sorting or appending rows.
For negative values of n
, this function returns all rows except
the first |n|
rows, equivalent to df[|n|:]
.
If n is larger than the number of rows, this function returns all rows.
Parameter | |
---|---|
Name | Description |
n |
int, default 5
Number of rows to select. |
to_csv
to_csv(
path_or_buf: str, sep=",", *, header: bool = True, index: bool = True
) -> None
Write object to a comma-separated values (csv) file on Cloud Storage.
Parameters | |
---|---|
Name | Description |
path_or_buf |
str
A destination URI of Cloud Storage files(s) to store the extracted dataframe in format of |
index |
bool, default True
If True, write row names (index). |
Returns | |
---|---|
Type | Description |
None | String output not yet supported. |
to_gbq
to_gbq(
destination_table: str,
*,
if_exists: typing.Optional[typing.Literal["fail", "replace", "append"]] = "fail",
index: bool = True,
ordering_id: typing.Optional[str] = None
) -> None
Write a DataFrame to a BigQuery table.
Parameters | |
---|---|
Name | Description |
destination_table |
str
Name of table to be written, in the form |
if_exists |
str, default 'fail'
Behavior when the destination table exists. Value can be one of: |
index |
bool. default True
whether write row names (index) or not. |
ordering_id |
Optional[str], default None
If set, write the ordering of the DataFrame as a column in the result table with this name. |
to_json
to_json(
path_or_buf: str,
orient: typing.Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
*,
lines: bool = False,
index: bool = True
) -> None
Convert the object to a JSON string, written to Cloud Storage.
Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.
Parameters | |
---|---|
Name | Description |
path_or_buf |
str
A destination URI of Cloud Storage files(s) to store the extracted dataframe in format of |
orient |
{
Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {{'split', 'records', 'index', 'table'}}. * DataFrame: - default is 'columns' - allowed values are: {{'split', 'records', 'index', 'columns', 'values', 'table'}}. * The format of the JSON string: - 'split' : dict like {{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}} - 'records' : list like [{{column -> value}}, ... , {{column -> value}}] - 'index' : dict like {{index -> {{column -> value}}}} - 'columns' : dict like {{column -> {{index -> value}}}} - 'values' : just the values array - 'table' : dict like {{'schema': {{schema}}, 'data': {{data}}}} Describing the data, where data component is like |
index |
bool, default True
If True, write row names (index). |
lines |
bool, default False
If 'orient' is 'records' write out line-delimited json format. Will throw ValueError if incorrect 'orient' since others are not list-like. |
Returns | |
---|---|
Type | Description |
None | String output not yet supported. |
to_numpy
to_numpy(dtype=None, copy=False, na_value=None, **kwargs) -> numpy.ndarray
Convert the DataFrame to a NumPy array.
Parameters | |
---|---|
Name | Description |
dtype |
None
The dtype to pass to |
copy |
bool, default None
Whether to ensure that the returned value is not a view on another array. |
na_value |
Any, default None
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns. |
Returns | |
---|---|
Type | Description |
numpy.ndarray | The converted NumPy array. |
to_pandas
to_pandas(
max_download_size: typing.Optional[int] = None,
sampling_method: typing.Optional[str] = None,
random_state: typing.Optional[int] = None,
) -> pandas.core.frame.DataFrame
Write DataFrame to pandas DataFrame.
Parameters | |
---|---|
Name | Description |
max_download_size |
int, default None
Download size threshold in MB. If max_download_size is exceeded when downloading data (e.g., to_pandas()), the data will be downsampled if bigframes.options.sampling.enable_downsampling is True, otherwise, an error will be raised. If set to a value other than None, this will supersede the global config. |
sampling_method |
str, default None
Downsampling algorithms to be chosen from, the choices are: "head": This algorithm returns a portion of the data from the beginning. It is fast and requires minimal computations to perform the downsampling; "uniform": This algorithm returns uniform random samples of the data. If set to a value other than None, this will supersede the global config. |
random_state |
int, default None
The seed for the uniform downsampling algorithm. If provided, the uniform method may take longer to execute and require more computation. If set to a value other than None, this will supersede the global config. |
Returns | |
---|---|
Type | Description |
pandas.DataFrame | A pandas DataFrame with all rows and columns of this DataFrame if the data_sampling_threshold_mb is not exceeded; otherwise, a pandas DataFrame with downsampled rows and all columns of this DataFrame. |
to_parquet
to_parquet(path: str, *, index: bool = True) -> None
Write a DataFrame to the binary Parquet format.
This function writes the dataframe as a parquet file
<https://parquet.apache.org/>
_ to Cloud Storage.
Parameters | |
---|---|
Name | Description |
path |
str
Destination URI(s) of Cloud Storage files(s) to store the extracted dataframe in format of |
index |
bool, default True
If |
truediv
truediv(
other: float | int | bigframes.series.Series, axis: str | int = "columns"
) -> DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
Equivalent to dataframe / other
. With reverse version, rtruediv
.
Among flexible wrappers (add
, sub
, mul
, div
, mod
, pow
) to
arithmetic operators: +
, -
, *
, /
, //
, %
, **
.
Parameters | |
---|---|
Name | Description |
other |
float, int, or Series
Any single or multiple element data structure, or list-like object. |
axis |
{0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on. |
Returns | |
---|---|
Type | Description |
DataFrame | DataFrame result of the arithmetic operation. |
value_counts
value_counts(
subset: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
dropna: bool = True,
)
Return a Series containing counts of unique rows in the DataFrame.
Parameters | |
---|---|
Name | Description |
subset |
label or list of labels, optional
Columns to use when counting unique combinations. |
normalize |
bool, default False
Return proportions rather than frequencies. |
sort |
bool, default True
Sort by frequencies. |
ascending |
bool, default False
Sort in ascending order. |
dropna |
bool, default True
Don’t include counts of rows that contain NA values. |
Returns | |
---|---|
Type | Description |
Series | Series containing counts of unique rows in the DataFrame |
var
var(*, numeric_only: bool = False) -> bigframes.series.Series
Return unbiased variance over requested axis.
Normalized by N-1 by default.
Parameter | |
---|---|
Name | Description |
numeric_only |
bool. default False
Default False. Include only float, int, boolean columns. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series | Series with unbiased variance over requested axis. |