Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Premiers pas avec les recommandations personnalisées
Vous pouvez créer rapidement une application de recommandations personnalisées de pointe à partir de vos propres données, capable de suggérer du contenu semblable à celui que l'utilisateur est en train de consulter.
Ce tutoriel explique comment créer une application de recommandations personnalisées pour les données structurées. Dans ce cas, les données structurées sont sous forme de données NDJSON ingérées à partir d'un bucket Cloud Storage.
Avant de suivre ce tutoriel, assurez-vous d'avoir effectué les étapes de la section Avant de commencer.
Pour obtenir des instructions détaillées sur cette tâche directement dans la console Google Cloud , cliquez sur Visite guidée :
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Ce bucket Cloud Storage contient un fichier de films au format NDJSON mis à disposition par Kaggle.
Cliquez sur Continuer.
Attribuez les propriétés clés comme suit :
Nom du champ
Propriété de la clé
homepage
uri
overview
description
Cliquez ensuite sur Continuer.
Saisissez un nom à afficher pour votre datastore, puis cliquez sur Créer.
Cliquez sur le nom de votre data store.
Sur la page Données, accédez à l'onglet Activité pour consulter l'état de l'ingestion de données. Une fois le processus d'importation terminé, la mention Importation terminée s'affiche dans la colonne État. Pour cet ensemble de données, cette opération prend généralement deux à trois minutes. Vous devrez peut-être cliquer sur Refresh (Actualiser) pour afficher Import completed (Importation terminée).
Cliquez sur l'onglet Documents pour afficher les documents importés.
Créer une application
Vous allez ensuite créer une application de recommandations et associer le datastore que vous avez créé précédemment.
Accédez à la page Applications.
Cliquez sur Créer une application.
Sur la page Créer une application, sous Moteur de recommandations, cliquez sur Créer.
Dans le champ Nom de l'application, saisissez le nom de votre application. L'ID de votre application s'affiche sous le nom de l'application.
Cliquez sur Continuer.
Dans la liste des datastores, sélectionnez ceux que vous avez créés précédemment.
Cliquez sur Créer.
Prévisualiser votre application
Dans le menu de navigation, cliquez sur Preview (Aperçu) pour tester l'application.
Si le message "Vous pourrez prévisualiser votre moteur de recommandation ici. Votre moteur est toujours en cours de préparation, réessayez plus tard" s'affiche, attendez et actualisez régulièrement la page. Vous devrez peut-être attendre quelques heures ou jusqu'au lendemain pour prévisualiser vos données.
Cliquez sur le champ ID du document. La liste des ID des documents s'affiche.
Cliquez sur l'ID du document pour lequel vous souhaitez obtenir des recommandations.
Vous pouvez également saisir un ID de document dans le champ ID du document.
Cliquez sur Obtenir des recommandations. Une liste de documents recommandés s'affiche.
Cliquez sur un document pour afficher les détails le concernant.
Déployer l'application
Il n'existe aucun widget de recommandations pour le déploiement de votre application. Pour tester votre application avant le déploiement, procédez comme suit:
Accédez à la page Données et copiez un ID de document.
Accédez à la page Integration (Intégration). Cette page inclut un exemple de commande pour la méthode servingConfigs.recommend dans l'API REST.
Collez l'ID du document que vous avez copié précédemment dans le champ ID du document.
Laissez le champ Pseudo-ID utilisateur tel quel.
Copiez l'exemple de requête et exécutez-le dans Cloud Shell.
Les résultats correspondent aux ID des documents recommandés en fonction du document que vous avez choisi.
Pour obtenir de l'aide sur l'intégration de l'application de recommandations dans votre application Web, consultez les exemples de code pour C#, Go, Java, Node.js, PHP et Ruby sur la page Obtenir des recommandations pour une application.
Effectuer un nettoyage
Pour éviter que les ressources utilisées dans cette démonstration soient facturées sur votre compte Google Cloud , procédez comme suit :
Pour éviter des frais Google Cloud inutiles, supprimez votre projet à l'aide deGoogle Cloud console si vous n'en avez plus besoin.
Si vous avez créé un projet pour apprendre à utiliser les applications d'IA et que vous n'en avez plus besoin, supprimez-le.
Si vous avez utilisé un projet Google Cloud existant, supprimez les ressources que vous avez créées pour éviter que des frais ne soient facturés sur votre compte. Pour en savoir plus, consultez Supprimer une application.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/05 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/05 (UTC)."],[[["\u003cp\u003eThis tutorial guides you through building a generic recommendations app that suggests content similar to what users are currently viewing, utilizing structured data in NDJSON format from a Cloud Storage bucket.\u003c/p\u003e\n"],["\u003cp\u003eBefore starting, you must enable Vertex AI Agent Builder and follow the steps outlined in the "Before you begin" section.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn to create a data store by importing structured data (JSONL) from a specified Cloud Storage bucket containing movie metadata, then configure key properties to map data fields.\u003c/p\u003e\n"],["\u003cp\u003eThe tutorial also covers the creation of a recommendations app, linking it to the previously created data store, and using the preview feature to test the recommendations engine.\u003c/p\u003e\n"],["\u003cp\u003eThe final steps involve demonstrating how to deploy your app, including using the REST API's \u003ccode\u003eservingConfigs.recommend\u003c/code\u003e method to get document recommendations, as well as cleaning up resources to avoid unnecessary charges.\u003c/p\u003e\n"]]],[],null,["# Get started with custom recommendations\n=======================================\n\n| **Note:** This feature is a Preview offering, subject to the \"Pre-GA Offerings Terms\" of the [GCP Service Specific Terms](https://cloud.google.com/terms/service-terms). Pre-GA products and features may have limited support, and changes to pre-GA products and features may not be compatible with other pre-GA versions. For more information, see the [launch stage descriptions](https://cloud.google.com/products#product-launch-stages). Further, by using this feature, you agree to the [Generative AI Preview terms and conditions](https://cloud.google.com/trustedtester/aitos) (\"Preview Terms\"). For this feature, you can process personal data as outlined in the [Cloud Data Processing Addendum](https://cloud.google.com/terms/data-processing-terms), subject to applicable restrictions and obligations in the Agreement (as defined in the Preview Terms).\n|\n| \u003cbr /\u003e\n|\nYou can quickly build a state-of-the-art custom recommendations app on your own\ndata that can suggest content similar to the content that the user is currently\nviewing.\n\nThis tutorial explains how to create a custom recommendations app for\nstructured data. In this case, the structured data is in the form of NDJSON\ningested from a Cloud Storage bucket.\n\nBefore following this tutorial, make sure you have done the steps in [Before you\nbegin](/generative-ai-app-builder/docs/before-you-begin).\n\n*** ** * ** ***\n\nTo follow step-by-step guidance for this task directly in the\nGoogle Cloud console, click **Guide me**:\n\n[Guide me](https://console.cloud.google.com/gen-app-builder/?tutorial=generative-ai-app-builder--genappbuilder-recommendations-intro)\n\n*** ** * ** ***\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the AI Applications, Cloud Storage APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=discoveryengine.googleapis.com,storage.googleapis.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the AI Applications, Cloud Storage APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=discoveryengine.googleapis.com,storage.googleapis.com)\n\n\u003cbr /\u003e\n\nEnable AI Applications\n----------------------\n\n1. In the Google Cloud console, go to the **AI Applications** page.\n\n [AI Applications](https://console.cloud.google.com/gen-app-builder/start)\n2. Optional: Click **Allow Google to selectively sample model input and\n responses**.\n\n3. Click **Continue and activate the API**.\n\nCreate a data store\n-------------------\n\nThis procedure guides you through creating a data store and uploading sample\ndata provided.\n\n1. Go to the **Data Stores** page.\n\n2. Click **Create data store**.\n\n3. On the **Select a data source** page, select **Cloud Storage**.\n\n4. On the **Import data from Cloud Storage** page, select **Structured\n data (JSONL)**.\n\n5. Click **File**.\n\n6. In the **gs://** field, enter the following value:\n\n ```\n cloud-samples-data/gen-app-builder/search/kaggle_movies/movie_metadata.ndjson\n ```\n\n This Cloud Storage bucket contains an NDJSON-formatted file of movies\n made available by\n [Kaggle](https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?select=movies_metadata.csv).\n7. Click **Continue**.\n\n8. Assign key properties as follows:\n\n And, click **Continue**.\n9. Enter a display name for your data store, and then click **Create**.\n\n10. Click the name of your data store.\n\n11. On the **Data** page, go to the **Activity** tab to see the\n status of your data ingestion. **Import completed** displays in the\n **Status** column when the import process is complete. For this dataset,\n this typically takes two to three minutes. You might need to click\n **Refresh** to see **Import completed**.\n\n12. Click the **Documents** tab to see the imported documents.\n\nCreate an app\n-------------\n\nNext, you create a recommendations app and link the data store you created previously.\n\n1. Go to the **Apps** page.\n\n2. Click **Create app**.\n\n3. On the **Create App** page, under **Recommendations engine** , click **Create**.\n\n4. In the **App name** field, enter a name for your app. Your app ID\n appears under the app name.\n\n5. Click **Continue**.\n\n6. In the list of data stores, select the data store that you created earlier.\n\n7. Click **Create**.\n\n### Preview your app\n\n1. In the navigation menu, click\n **Preview**\n to test the app.\n\n2. If you see the message \"You will be able to preview your recommendation\n engine here We are still preparing your engine, please check back\n later\", wait and periodically refresh the page. You might have to wait\n some hours or until the next day to preview your data.\n\n3. Click the **Document ID** field. A list of document IDs appears.\n\n4. Click the document ID for the document that you want recommendations for.\n Alternatively, enter a document ID into the **Document ID** field.\n\n5. Click **Get recommendations**. A list of recommended documents appears.\n\n6. Click a document to get document details.\n\n### Deploy your app\n\nThere is no recommendations widget for deploying your app. To test your app\nbefore deployment:\n\n1. Go to the **Data** page and copy a document **ID**.\n\n2. Go to the **Integration** page. This page includes a sample command for the\n [`servingConfigs.recommend`](/generative-ai-app-builder/docs/reference/rest/v1beta/projects.locations.dataStores.servingConfigs/recommend) method in the REST API.\n\n3. Paste the document ID you copied earlier into the **Document ID** field.\n\n4. Leave the **User Pseudo ID** field as is.\n\n5. Copy the example request and run it in Cloud Shell.\n\n The results are the IDs of documents recommended based on the document that you chose.\n\nFor help integrating the recommendations app into your web app,\nsee the code samples for C#, Go, Java, Node.js, PHP, and Ruby at\n[Get recommendations for an app](/generative-ai-app-builder/docs/preview-recommendations).\n\nClean up\n--------\n\n\nTo avoid incurring charges to your Google Cloud account for\nthe resources used on this page, follow these steps.\n\n1. To avoid unnecessary Google Cloud charges, use the [Google Cloud console](https://console.cloud.google.com/) to delete your project if you don't need it.\n2. If you created a new project to learn about AI Applications and you no longer need the project, [delete the project](https://console.cloud.google.com/cloud-resource-manager).\n3. If you used an existing Google Cloud project, delete the resources you created to avoid incurring charges to your account. For more information, see [Delete an app](/generative-ai-app-builder/docs/delete-engine).\n4. Follow the steps in [Turn off\n Vertex AI Search](/generative-ai-app-builder/docs/turn-off-enterprise-search).\n\nWhat's next\n-----------\n\n- [Introduction to Vertex AI Search](/generative-ai-app-builder/docs/enterprise-search-introduction)\n- [About apps and data stores](/generative-ai-app-builder/docs/create-datastore-ingest)"]]