Tutorial su ImageMagick


Questo tutorial mostra come utilizzare le funzioni Cloud Run, l'API Vision e ImageMagick per rilevare e sfumare le immagini offensive caricate in un bucket Cloud Storage.

Obiettivi

  • Esegui il deployment di una funzione CloudEvent attivata da archiviazione.
  • Utilizza l'API Vision per rilevare contenuti violenti o per adulti.
  • Utilizza ImageMagick per sfocare le immagini offensive.
  • Testa la funzione caricando un'immagine di uno zombie cannibale.

Costi

In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:

  • Cloud Run functions
  • Cloud Storage
  • Cloud Vision
  • Cloud Build
  • Pub/Sub
  • Artifact Registry
  • Eventarc
  • Cloud Logging

For details, see Cloud Run functions pricing.

Per generare una stima dei costi in base all'utilizzo previsto, utilizza il Calcolatore prezzi. I nuovi utenti di Google Cloud potrebbero essere idonei per una prova gratuita.

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Artifact Registry, Eventarc, Cloud Storage, Cloud Vision, Logging, and Pub/Sub APIs.

    Enable the APIs

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Make sure that billing is enabled for your Google Cloud project.

  9. Enable the Cloud Functions, Cloud Build, Artifact Registry, Eventarc, Cloud Storage, Cloud Vision, Logging, and Pub/Sub APIs.

    Enable the APIs

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init
  12. Se hai già installato gcloud CLI, aggiornalo eseguendo il seguente comando:

    gcloud components update
  13. Prepara l'ambiente di sviluppo.

Visualizzare il flusso di dati

Il flusso di dati nell'applicazione del tutorial di ImageMagick prevede diversi passaggi:

  1. Un'immagine viene caricata in un bucket Cloud Storage.
  2. La funzione Cloud Run analizza l'immagine utilizzando l'API Cloud Vision.
  3. Se vengono rilevati contenuti violenti o per adulti, la funzione Cloud Run utilizza ImageMagick per sfocare l'immagine.
  4. L'immagine sfocata viene caricata in un altro bucket Cloud Storage per essere utilizzata.

Prepara l'applicazione

  1. Crea un bucket Cloud Storage regionale per il caricamento delle immagini, dove YOUR_INPUT_BUCKET_NAME è un nome univoco a livello globale e REGION è la regione in cui prevedi di eseguire il deployment della funzione:

    gcloud storage buckets create gs://YOUR_INPUT_BUCKET_NAME --location=REGION
  2. Crea un bucket Cloud Storage regionale per ricevere le immagini sfocate, dove YOUR_OUTPUT_BUCKET_NAME è un nome di bucket unico a livello mondiale e REGION è la regione in cui prevedi di eseguire il deployment della funzione:

    gcloud storage buckets create gs://YOUR_OUTPUT_BUCKET_NAME --location=REGION
  3. Clona il repository dell'app di esempio sulla tua macchina locale:

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Vai

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

  4. Passa alla directory che contiene il codice campione delle funzioni Cloud Run:

    Node.js

    cd nodejs-docs-samples/functions/v2/imagemagick/

    Python

    cd python-docs-samples/functions/v2/imagemagick/

    Vai

    cd golang-samples/functions/functionsv2/imagemagick/

    Java

    cd java-docs-samples/functions/v2/imagemagick/

comprendi il codice

L'esempio ImageMagick include dipendenze e due funzioni diverse. La prima funzione analizza l'immagine e la seconda la sfoca se contiene contenuti violenti o per adulti.

Importa le dipendenze

L'applicazione deve importare diverse dipendenze per interagire con i servizi Google Cloud, ImageMagick e il file system:

ImageMagick e il relativo strumento a riga di comando convert sono inclusi per impostazione predefinita nell'ambiente di esecuzione di Cloud Run Functions per la maggior parte dei runtime. Per PHP, potrebbe essere necessario eseguire alcune configurazioni manuali. Tieni presente che Cloud Run Functions non supporta l'installazione di pacchetti personalizzati a livello di sistema.

Node.js

const functions = require('@google-cloud/functions-framework');
const gm = require('gm').subClass({imageMagick: true});
const fs = require('fs').promises;
const path = require('path');
const vision = require('@google-cloud/vision');

const {Storage} = require('@google-cloud/storage');
const storage = new Storage();
const client = new vision.ImageAnnotatorClient();

const {BLURRED_BUCKET_NAME} = process.env;

Python

import os
import tempfile

import functions_framework
from google.cloud import storage, vision
from wand.image import Image

storage_client = storage.Client()
vision_client = vision.ImageAnnotatorClient()

Vai


// Package imagemagick contains an example of using ImageMagick to process a
// file uploaded to Cloud Storage.
package imagemagick

import (
	"context"
	"errors"
	"fmt"
	"log"
	"os"
	"os/exec"

	"cloud.google.com/go/storage"
	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
	cloudevents "github.com/cloudevents/sdk-go/v2"
	"github.com/googleapis/google-cloudevents-go/cloud/storagedata"
	"google.golang.org/protobuf/encoding/protojson"
)

// Global API clients used across function invocations.
var (
	storageClient *storage.Client
	visionClient  *vision.ImageAnnotatorClient
)

func init() {
	// Declare a separate err variable to avoid shadowing the client variables.
	var err error

	bgctx := context.Background()
	storageClient, err = storage.NewClient(bgctx)
	if err != nil {
		log.Fatalf("storage.NewClient: %v", err)
	}

	visionClient, err = vision.NewImageAnnotatorClient(bgctx)
	if err != nil {
		log.Fatalf("vision.NewAnnotatorClient: %v", err)
	}
	functions.CloudEvent("blur-offensive-images", blurOffensiveImages)
}

Java


import com.google.cloud.functions.CloudEventsFunction;
import com.google.cloud.storage.Blob;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import com.google.events.cloud.storage.v1.StorageObjectData;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.util.JsonFormat;
import io.cloudevents.CloudEvent;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

public class ImageMagick implements CloudEventsFunction {

  private static Storage storage = StorageOptions.getDefaultInstance().getService();
  private static final String BLURRED_BUCKET_NAME = System.getenv("BLURRED_BUCKET_NAME");
  private static final Logger logger = Logger.getLogger(ImageMagick.class.getName());
}

Analizzare le immagini

La seguente funzione viene richiamata quando un'immagine viene caricata nel bucket Cloud Storage creato per l'input dell'immagine. La funzione utilizza l'API Vision per rilevare contenuti violenti o per adulti nelle immagini caricate.

Node.js

// Blurs uploaded images that are flagged as Adult or Violence.
functions.cloudEvent('blurOffensiveImages', async cloudEvent => {
  // This event represents the triggering Cloud Storage object.
  const bucket = cloudEvent.data.bucket;
  const name = cloudEvent.data.name;
  const file = storage.bucket(bucket).file(name);
  const filePath = `gs://${bucket}/${name}`;

  console.log(`Analyzing ${file.name}.`);

  try {
    const [result] = await client.safeSearchDetection(filePath);
    const detections = result.safeSearchAnnotation || {};

    if (
      // Levels are defined in https://cloud.google.com/vision/docs/reference/rest/v1/AnnotateImageResponse#likelihood
      detections.adult === 'VERY_LIKELY' ||
      detections.violence === 'VERY_LIKELY'
    ) {
      console.log(`Detected ${file.name} as inappropriate.`);
      return await blurImage(file, BLURRED_BUCKET_NAME);
    } else {
      console.log(`Detected ${file.name} as OK.`);
    }
  } catch (err) {
    console.error(`Failed to analyze ${file.name}.`, err);
    throw err;
  }
});

Python

# Blurs uploaded images that are flagged as Adult or Violent imagery.
@functions_framework.cloud_event
def blur_offensive_images(cloud_event):
    file_data = cloud_event.data

    file_name = file_data["name"]
    bucket_name = file_data["bucket"]

    blob = storage_client.bucket(bucket_name).get_blob(file_name)
    blob_uri = f"gs://{bucket_name}/{file_name}"
    blob_source = vision.Image(source=vision.ImageSource(gcs_image_uri=blob_uri))

    # Ignore already-blurred files
    if file_name.startswith("blurred-"):
        print(f"The image {file_name} is already blurred.")
        return

    print(f"Analyzing {file_name}.")

    result = vision_client.safe_search_detection(image=blob_source)
    detected = result.safe_search_annotation

    # Process image
    # 5 maps to VERY_LIKELY
    if detected.adult == 5 or detected.violence == 5:
        print(f"The image {file_name} was detected as inappropriate.")
        return __blur_image(blob)
    else:
        print(f"The image {file_name} was detected as OK.")

Vai


// blurOffensiveImages blurs offensive images uploaded to GCS.
func blurOffensiveImages(ctx context.Context, e cloudevents.Event) error {
	outputBucket := os.Getenv("BLURRED_BUCKET_NAME")
	if outputBucket == "" {
		return errors.New("environment variable BLURRED_BUCKET_NAME must be set")
	}

	var gcsEvent storagedata.StorageObjectData

	// If you omit `DiscardUnknown`, protojson.Unmarshal returns an error
	// when encountering a new or unknown field.
	options := protojson.UnmarshalOptions{
		DiscardUnknown: true,
	}

	err := options.Unmarshal(e.Data(), &gcsEvent)
	if err != nil {
		return fmt.Errorf("protojson.Unmarshal: failed to decode event data: %w", err)
	}
	img := vision.NewImageFromURI(fmt.Sprintf("gs://%s/%s", gcsEvent.GetBucket(), gcsEvent.GetName()))

	resp, err := visionClient.DetectSafeSearch(ctx, img, nil)
	if err != nil {
		return fmt.Errorf("visionClient.DetectSafeSearch: %w", err)
	}

	if resp.GetAdult() == visionpb.Likelihood_VERY_LIKELY ||
		resp.GetViolence() == visionpb.Likelihood_VERY_LIKELY {
		return blur(ctx, gcsEvent.Bucket, outputBucket, gcsEvent.Name)
	}
	log.Printf("The image %q was detected as OK.", gcsEvent.Name)
	return nil
}

Java

@Override
// Blurs uploaded images that are flagged as Adult or Violence.
public void accept(CloudEvent event) throws InvalidProtocolBufferException {
  // Extract the GCS Event data from the CloudEvent's data payload.
  StorageObjectData data = getEventData(event);
  // Validate parameters
  if (data == null) {
    logger.severe("Error: Malformed GCS event.");
    return;
  }

  BlobInfo blobInfo = BlobInfo.newBuilder(data.getBucket(), data.getName()).build();

  // Construct URI to GCS bucket and file.
  String gcsPath = String.format("gs://%s/%s", data.getBucket(), data.getName());
  logger.info(String.format("Analyzing %s", data.getName()));

  // Construct request.
  ImageSource imgSource = ImageSource.newBuilder().setImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feature = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request = AnnotateImageRequest
      .newBuilder()
      .addFeatures(feature)
      .setImage(img)
      .build();
  List<AnnotateImageRequest> requests = List.of(request);

  // Send request to the Vision API.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();
    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        logger.info(String.format("Error: %s", res.getError().getMessage()));
        return;
      }
      // Get Safe Search Annotations
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      if (annotation.getAdultValue() == 5 || annotation.getViolenceValue() == 5) {
        logger.info(String.format("Detected %s as inappropriate.", data.getName()));
        blur(blobInfo);
      } else {
        logger.info(String.format("Detected %s as OK.", data.getName()));
      }
    }
  } catch (IOException e) {
    logger.log(Level.SEVERE, "Error with Vision API: " + e.getMessage(), e);
  }
}

Sfocare le immagini

La seguente funzione viene chiamata quando vengono rilevati contenuti violenti o per adulti in un'immagine caricata. La funzione scarica l'immagine offensiva, utilizza ImageMagick per sfocare l'immagine e poi carica l'immagine sfocata nel bucket di output.

Node.js

// Blurs the given file using ImageMagick, and uploads it to another bucket.
const blurImage = async (file, blurredBucketName) => {
  const tempLocalPath = `/tmp/${path.parse(file.name).base}`;

  // Download file from bucket.
  try {
    await file.download({destination: tempLocalPath});

    console.log(`Downloaded ${file.name} to ${tempLocalPath}.`);
  } catch (err) {
    throw new Error(`File download failed: ${err}`);
  }

  await new Promise((resolve, reject) => {
    gm(tempLocalPath)
      .blur(0, 16)
      .write(tempLocalPath, (err, stdout) => {
        if (err) {
          console.error('Failed to blur image.', err);
          reject(err);
        } else {
          console.log(`Blurred image: ${file.name}`);
          resolve(stdout);
        }
      });
  });

  // Upload result to a different bucket, to avoid re-triggering this function.
  const blurredBucket = storage.bucket(blurredBucketName);

  // Upload the Blurred image back into the bucket.
  const gcsPath = `gs://${blurredBucketName}/${file.name}`;
  try {
    await blurredBucket.upload(tempLocalPath, {destination: file.name});
    console.log(`Uploaded blurred image to: ${gcsPath}`);
  } catch (err) {
    throw new Error(`Unable to upload blurred image to ${gcsPath}: ${err}`);
  }

  // Delete the temporary file.
  return fs.unlink(tempLocalPath);
};

Python

# Blurs the given file using ImageMagick.
def __blur_image(current_blob):
    file_name = current_blob.name
    _, temp_local_filename = tempfile.mkstemp()

    # Download file from bucket.
    current_blob.download_to_filename(temp_local_filename)
    print(f"Image {file_name} was downloaded to {temp_local_filename}.")

    # Blur the image using ImageMagick.
    with Image(filename=temp_local_filename) as image:
        image.resize(*image.size, blur=16, filter="hamming")
        image.save(filename=temp_local_filename)

    print(f"Image {file_name} was blurred.")

    # Upload result to a second bucket, to avoid re-triggering the function.
    # You could instead re-upload it to the same bucket + tell your function
    # to ignore files marked as blurred (e.g. those with a "blurred" prefix)
    blur_bucket_name = os.getenv("BLURRED_BUCKET_NAME")
    blur_bucket = storage_client.bucket(blur_bucket_name)
    new_blob = blur_bucket.blob(file_name)
    new_blob.upload_from_filename(temp_local_filename)
    print(f"Blurred image uploaded to: gs://{blur_bucket_name}/{file_name}")

    # Delete the temporary file.
    os.remove(temp_local_filename)

Vai


// blur blurs the image stored at gs://inputBucket/name and stores the result in
// gs://outputBucket/name.
func blur(ctx context.Context, inputBucket, outputBucket, name string) error {
	inputBlob := storageClient.Bucket(inputBucket).Object(name)
	r, err := inputBlob.NewReader(ctx)
	if err != nil {
		return fmt.Errorf("inputBlob.NewReader: %w", err)
	}

	outputBlob := storageClient.Bucket(outputBucket).Object(name)
	w := outputBlob.NewWriter(ctx)
	defer w.Close()

	// Use - as input and output to use stdin and stdout.
	cmd := exec.Command("convert", "-", "-blur", "0x8", "-")
	cmd.Stdin = r
	cmd.Stdout = w

	if err := cmd.Run(); err != nil {
		return fmt.Errorf("cmd.Run: %w", err)
	}

	if err := w.Close(); err != nil {
		return fmt.Errorf("failed to write output file: %w", err)
	}
	log.Printf("Blurred image uploaded to gs://%s/%s", outputBlob.BucketName(), outputBlob.ObjectName())

	return nil
}

Java

// Blurs the file described by blobInfo using ImageMagick,
// and uploads it to the blurred bucket.
private static void blur(BlobInfo blobInfo) throws IOException {
  String bucketName = blobInfo.getBucket();
  String fileName = blobInfo.getName();

  // Download image
  Blob blob = storage.get(BlobId.of(bucketName, fileName));
  Path download = Paths.get("/tmp/", fileName);
  blob.downloadTo(download);

  // Construct the command.
  Path upload = Paths.get("/tmp/", "blurred-" + fileName);
  List<String> args = List.of("convert", download.toString(), "-blur", "0x8", upload.toString());
  try {
    ProcessBuilder pb = new ProcessBuilder(args);
    Process process = pb.start();
    process.waitFor();
  } catch (Exception e) {
    logger.info(String.format("Error: %s", e.getMessage()));
  }

  // Upload image to blurred bucket.
  BlobId blurredBlobId = BlobId.of(BLURRED_BUCKET_NAME, fileName);
  BlobInfo blurredBlobInfo = BlobInfo
      .newBuilder(blurredBlobId)
      .setContentType(blob.getContentType())
      .build();

  byte[] blurredFile = Files.readAllBytes(upload);
  storage.create(blurredBlobInfo, blurredFile);
  logger.info(
      String.format("Blurred image uploaded to: gs://%s/%s", BLURRED_BUCKET_NAME, fileName));

  // Remove images from fileSystem
  Files.delete(download);
  Files.delete(upload);
}

esegui il deployment della funzione

Per eseguire il deployment della funzione Cloud Run con un trigger di archiviazione, esegui il seguente comando nella directory contenente il codice campione (o, nel caso di Java, il file pom.xml):

Node.js

gcloud functions deploy nodejs-blur-function \
--gen2 \
--runtime=RUNTIME \
--region=REGION \
--source=. \
--entry-point=blurOffensiveImages \
--trigger-bucket=YOUR_INPUT_BUCKET_NAME \
--set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

Python

gcloud functions deploy python-blur-function \
--gen2 \
--runtime=RUNTIME \
--region=REGION \
--source=. \
--entry-point=blur_offensive_images \
--trigger-bucket=YOUR_INPUT_BUCKET_NAME \
--set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

Vai

gcloud functions deploy go-blur-function \
--gen2 \
--runtime=RUNTIME \
--region=REGION \
--source=. \
--entry-point=blur-offensive-images \
--trigger-bucket=YOUR_INPUT_BUCKET_NAME \
--set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

Java

gcloud functions deploy java-blur-function \
--gen2 \
--runtime=RUNTIME \
--region=REGION \
--source=. \
--entry-point=functions.ImageMagick \
--trigger-bucket=YOUR_INPUT_BUCKET_NAME \
--set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

Sostituisci quanto segue:

  • RUNTIME: un ambiente di runtime basato su Ubuntu 18.04 o versioni successive
  • REGION: il nome della regione Google Cloud in cui vuoi eseguire il deployment della funzione (ad esempio us-west1).
  • YOUR_INPUT_BUCKET_NAME: il nome del bucket Cloud Storage per il caricamento delle immagini.
  • YOUR_OUTPUT_BUCKET_NAME: il nome del bucket in cui devono essere salvate le immagini sfocate.

Quando esegui il deployment delle funzioni Cloud Run, specifica solo il nome del bucket senza il carattere iniziale gs://, ad esempio --trigger-event-filters="bucket=my-bucket".

Carica un'immagine

  1. Caricare un'immagine offensiva, ad esempio questa di un zombie cannibale:

    gcloud storage cp zombie.jpg gs://YOUR_INPUT_BUCKET_NAME

    dove YOUR_INPUT_BUCKET_NAME è il bucket Cloud Storage che hai creato in precedenza per il caricamento delle immagini.

  2. Dovresti vedere l'analisi dell'immagine nei log:

    gcloud beta functions logs read YOUR_FUNCTION_NAME --gen2 --limit=100
  3. Puoi visualizzare le immagini sfocate nel YOUR_OUTPUT_BUCKET_NAME bucket Cloud Storage che hai creato in precedenza.

Esegui la pulizia

Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questo tutorial, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.

Elimina il progetto

Il modo più semplice per eliminare la fatturazione è eliminare il progetto che hai creato per il tutorial.

Per eliminare il progetto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Elimina la funzione Cloud Run

L'eliminazione delle funzioni Cloud Run non rimuove le risorse archiviate in Cloud Storage.

Per eliminare la funzione di cui hai eseguito il deployment in questo tutorial, esegui il seguente comando:

Node.js

gcloud functions delete nodejs-blur-function --gen2 --region REGION 

Python

gcloud functions delete python-blur-function --gen2 --region REGION 

Vai

gcloud functions delete go-blur-function --gen2 --region REGION 

Java

gcloud functions delete java-blur-function --gen2 --region REGION 

Puoi anche eliminare le funzioni Cloud Run dalla console Google Cloud.