Tutorial sul riconoscimento ottico dei caratteri (OCR) (1ª generazione.)


Scopri come eseguire il riconoscimento ottico dei caratteri (OCR) su Google Cloud. Questo tutorial mostra come caricare file immagine su Cloud Storage, estrarre il testo dalle immagini utilizzando l'API Cloud Vision, tradurre il testo utilizzando l'API Google Cloud Translation e salvare nuovamente le traduzioni su Cloud Storage. Pub/Sub viene utilizzato per mettere in coda varie attività e attivare le funzioni Cloud Run giuste per eseguirle.

Per ulteriori informazioni sull'invio di una richiesta di rilevamento del testo (OCR), consulta Rileva testo nelle immagini, Rileva scrittura a mano libera nelle immagini o Rileva testo nei file (PDF/TIFF).

Obiettivi

  • Scrivi ed esegui il deployment di diverse funzioni Cloud Run in background.
  • Carica le immagini su Cloud Storage.
  • Estrai, traduci e salva il testo contenuto nelle immagini caricate.

Costi

In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:

  • Cloud Run functions
  • Pub/Sub
  • Cloud Storage
  • Cloud Translation API
  • Cloud Vision

Per generare una stima dei costi in base all'utilizzo previsto, utilizza il Calcolatore prezzi. I nuovi utenti di Google Cloud potrebbero avere diritto a una prova gratuita.

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Make sure that billing is enabled for your Google Cloud project.

  9. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init
  12. Se hai già installato gcloud CLI, aggiornalo eseguendo il seguente comando:

    gcloud components update
  13. Prepara l'ambiente di sviluppo.

Visualizzazione del flusso di dati

Il flusso di dati nell'applicazione del tutorial OCR prevede diversi passaggi:

  1. Un'immagine contenente testo in qualsiasi lingua viene caricata su Cloud Storage.
  2. Viene attivata una funzione Cloud Run che utilizza l'API Vision per estrarre il testo e rilevare la lingua di origine.
  3. Il testo viene messo in coda per la traduzione pubblicando un messaggio in un argomento Pub/Sub. Viene messa in coda una traduzione per ogni lingua di destinazione diversa dalla lingua di origine.
  4. Se una lingua di destinazione corrisponde alla lingua di origine, la coda di traduzione viene saltata e il testo viene inviato alla coda dei risultati, che è un altro argomento Pub/Sub.
  5. Una funzione Cloud Run utilizza l'API Translation per tradurre il testo nella coda di traduzione. Il risultato tradotto viene inviato alla coda dei risultati.
  6. Un'altra funzione Cloud Run salva il testo tradotto dalla coda dei risultati in Cloud Storage.
  7. I risultati si trovano in Cloud Storage come file di testo per ogni traduzione.

Potrebbe essere utile visualizzare i passaggi:

Preparazione della richiesta

  1. Crea un bucket Cloud Storage in cui caricare le immagini, dove YOUR_IMAGE_BUCKET_NAME è un nome di bucket univoco a livello globale:

    gcloud storage buckets create gs://YOUR_IMAGE_BUCKET_NAME
  2. Crea un bucket Cloud Storage in cui salvare le traduzioni di testo, dove YOUR_RESULT_BUCKET_NAME è un nome di bucket univoco a livello globale:

    gcloud storage buckets create gs://YOUR_RESULT_BUCKET_NAME
  3. Crea un argomento Pub/Sub su cui pubblicare le richieste di traduzione, dove YOUR_TRANSLATE_TOPIC_NAME è il nome dell'argomento della richiesta di traduzione:

    gcloud pubsub topics create YOUR_TRANSLATE_TOPIC_NAME
  4. Crea un argomento Pub/Sub in cui pubblicare i risultati della traduzione completata, dove YOUR_RESULT_TOPIC_NAME è il nome dell'argomento risultato della traduzione:

    gcloud pubsub topics create YOUR_RESULT_TOPIC_NAME
  5. Clona il repository dell'app di esempio sulla tua macchina locale:

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Vai

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    In alternativa, puoi scaricare l'esempio come file ZIP ed estrarlo.

  6. Passa alla directory che contiene il codice di esempio delle funzioni Cloud Run:

    Node.js

    cd nodejs-docs-samples/functions/ocr/app/

    Python

    cd python-docs-samples/functions/ocr/app/

    Vai

    cd golang-samples/functions/ocr/app/

    Java

    cd java-docs-samples/functions/ocr/ocr-process-image/

Nozioni di base sul codice

Importazione delle dipendenze

L'applicazione deve importare diverse dipendenze per comunicare con i servizi Google Cloud Platform:

Node.js

// Get a reference to the Pub/Sub component
const {PubSub} = require('@google-cloud/pubsub');
const pubsub = new PubSub();
// Get a reference to the Cloud Storage component
const {Storage} = require('@google-cloud/storage');
const storage = new Storage();

// Get a reference to the Cloud Vision API component
const Vision = require('@google-cloud/vision');
const vision = new Vision.ImageAnnotatorClient();

// Get a reference to the Translate API component
const {Translate} = require('@google-cloud/translate').v2;
const translate = new Translate();

Python

import base64
import json
import os
from typing import Dict, TypeVar

from google.cloud import pubsub_v1
from google.cloud import storage
from google.cloud import translate_v2 as translate
from google.cloud import vision

vision_client = vision.ImageAnnotatorClient()
translate_client = translate.Client()
publisher = pubsub_v1.PublisherClient()
storage_client = storage.Client()

project_id = os.environ["GCP_PROJECT"]

Vai


// Package ocr contains Go samples for creating OCR
// (Optical Character Recognition) Cloud functions.
package ocr

import (
	"context"
	"fmt"
	"os"
	"strings"
	"time"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/storage"
	"cloud.google.com/go/translate"
	vision "cloud.google.com/go/vision/apiv1"
	"golang.org/x/text/language"
)

type ocrMessage struct {
	Text     string       `json:"text"`
	FileName string       `json:"fileName"`
	Lang     language.Tag `json:"lang"`
	SrcLang  language.Tag `json:"srcLang"`
}

// GCSEvent is the payload of a GCS event.
type GCSEvent struct {
	Bucket         string    `json:"bucket"`
	Name           string    `json:"name"`
	Metageneration string    `json:"metageneration"`
	ResourceState  string    `json:"resourceState"`
	TimeCreated    time.Time `json:"timeCreated"`
	Updated        time.Time `json:"updated"`
}

// PubSubMessage is the payload of a Pub/Sub event.
// See the documentation for more details:
// https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
type PubSubMessage struct {
	Data []byte `json:"data"`
}

var (
	visionClient    *vision.ImageAnnotatorClient
	translateClient *translate.Client
	pubsubClient    *pubsub.Client
	storageClient   *storage.Client

	projectID      string
	resultBucket   string
	resultTopic    string
	toLang         []string
	translateTopic string
)

func setup(ctx context.Context) error {
	projectID = os.Getenv("GCP_PROJECT")
	resultBucket = os.Getenv("RESULT_BUCKET")
	resultTopic = os.Getenv("RESULT_TOPIC")
	toLang = strings.Split(os.Getenv("TO_LANG"), ",")
	translateTopic = os.Getenv("TRANSLATE_TOPIC")

	var err error // Prevent shadowing clients with :=.

	if visionClient == nil {
		visionClient, err = vision.NewImageAnnotatorClient(ctx)
		if err != nil {
			return fmt.Errorf("vision.NewImageAnnotatorClient: %w", err)
		}
	}

	if translateClient == nil {
		translateClient, err = translate.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if pubsubClient == nil {
		pubsubClient, err = pubsub.NewClient(ctx, projectID)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if storageClient == nil {
		storageClient, err = storage.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("storage.NewClient: %w", err)
		}
	}
	return nil
}

Java

public class OcrProcessImage implements BackgroundFunction<GcsEvent> {
  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = System.getenv("GCP_PROJECT");
  private static final String TRANSLATE_TOPIC_NAME = System.getenv("TRANSLATE_TOPIC");
  private static final String[] TO_LANGS = System.getenv("TO_LANG").split(",");

  private static final Logger logger = Logger.getLogger(OcrProcessImage.class.getName());
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
  private Publisher publisher;

  public OcrProcessImage() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, TRANSLATE_TOPIC_NAME)).build();
  }
}

Elaborazione delle immagini

La seguente funzione legge un file immagine caricato da Cloud Storage e chiama una funzione per rilevare se l'immagine contiene testo:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a file is uploaded to the Cloud Storage bucket you created
 * for uploading images.
 *
 * @param {object} event A Google Cloud Storage File object.
 */
exports.processImage = async event => {
  const {bucket, name} = event;

  if (!bucket) {
    throw new Error(
      'Bucket not provided. Make sure you have a "bucket" property in your request'
    );
  }
  if (!name) {
    throw new Error(
      'Filename not provided. Make sure you have a "name" property in your request'
    );
  }

  await detectText(bucket, name);
  console.log(`File ${name} processed.`);
};

Python

def process_image(file_info: dict, context: dict) -> None:
    """Cloud Function triggered by Cloud Storage when a file is changed.

    Args:
        file_info: Metadata of the changed file, provided by the
            triggering Cloud Storage event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    bucket = validate_message(file_info, "bucket")
    name = validate_message(file_info, "name")

    detect_text(bucket, name)

    print("File {} processed.".format(file_info["name"]))

Vai


package ocr

import (
	"context"
	"fmt"
	"log"
)

// ProcessImage is executed when a file is uploaded to the Cloud Storage bucket you
// created for uploading images. It runs detectText, which processes the image for text.
func ProcessImage(ctx context.Context, event GCSEvent) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}
	if event.Bucket == "" {
		return fmt.Errorf("empty file.Bucket")
	}
	if event.Name == "" {
		return fmt.Errorf("empty file.Name")
	}
	if err := detectText(ctx, event.Bucket, event.Name); err != nil {
		return fmt.Errorf("detectText: %w", err)
	}
	log.Printf("File %s processed.", event.Name)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.DetectLanguageRequest;
import com.google.cloud.translate.v3.DetectLanguageResponse;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.GcsEvent;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

  @Override
  public void accept(GcsEvent gcsEvent, Context context) {

    // Validate parameters
    String bucket = gcsEvent.getBucket();
    if (bucket == null) {
      throw new IllegalArgumentException("Missing bucket parameter");
    }
    String filename = gcsEvent.getName();
    if (filename == null) {
      throw new IllegalArgumentException("Missing name parameter");
    }

    detectText(bucket, filename);
  }
}

La seguente funzione estrae il testo dall'immagine utilizzando l'API Vision e mette in coda il testo per la traduzione:

Node.js

/**
 * Detects the text in an image using the Google Vision API.
 *
 * @param {string} bucketName Cloud Storage bucket name.
 * @param {string} filename Cloud Storage file name.
 * @returns {Promise}
 */
const detectText = async (bucketName, filename) => {
  console.log(`Looking for text in image ${filename}`);
  const [textDetections] = await vision.textDetection(
    `gs://${bucketName}/${filename}`
  );
  const [annotation] = textDetections.textAnnotations;
  const text = annotation ? annotation.description.trim() : '';
  console.log('Extracted text from image:', text);

  let [translateDetection] = await translate.detect(text);
  if (Array.isArray(translateDetection)) {
    [translateDetection] = translateDetection;
  }
  console.log(
    `Detected language "${translateDetection.language}" for ${filename}`
  );

  // Submit a message to the bus for each language we're going to translate to
  const TO_LANGS = process.env.TO_LANG.split(',');
  const topicName = process.env.TRANSLATE_TOPIC;

  const tasks = TO_LANGS.map(lang => {
    const messageData = {
      text: text,
      filename: filename,
      lang: lang,
    };

    // Helper function that publishes translation result to a Pub/Sub topic
    // For more information on publishing Pub/Sub messages, see this page:
    //   https://cloud.google.com/pubsub/docs/publisher
    return publishResult(topicName, messageData);
  });

  return Promise.all(tasks);
};

Python

def detect_text(bucket: str, filename: str) -> None:
    """
    Extract the text from an image uploaded to Cloud Storage.

    Extract the text from an image uploaded to Cloud Storage, then
    publish messages requesting subscribing services translate the text
    to each target language and save the result.

    Args:
        bucket: name of GCS bucket in which the file is stored.
        filename: name of the file to be read.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    print("Looking for text in image {}".format(filename))

    futures = []

    image = vision.Image(
        source=vision.ImageSource(gcs_image_uri=f"gs://{bucket}/{filename}")
    )
    text_detection_response = vision_client.text_detection(image=image)
    annotations = text_detection_response.text_annotations
    if len(annotations) > 0:
        text = annotations[0].description
    else:
        text = ""
    print(f"Extracted text {text} from image ({len(text)} chars).")

    detect_language_response = translate_client.detect_language(text)
    src_lang = detect_language_response["language"]
    print(f"Detected language {src_lang} for text {text}.")

    # Submit a message to the bus for each target language
    to_langs = os.environ["TO_LANG"].split(",")
    for target_lang in to_langs:
        topic_name = os.environ["TRANSLATE_TOPIC"]
        if src_lang == target_lang or src_lang == "und":
            topic_name = os.environ["RESULT_TOPIC"]
        message = {
            "text": text,
            "filename": filename,
            "lang": target_lang,
            "src_lang": src_lang,
        }
        message_data = json.dumps(message).encode("utf-8")
        topic_path = publisher.topic_path(project_id, topic_name)
        future = publisher.publish(topic_path, data=message_data)
        futures.append(future)
    for future in futures:
        future.result()

Vai


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
	"golang.org/x/text/language"
)

// detectText detects the text in an image using the Google Vision API.
func detectText(ctx context.Context, bucketName, fileName string) error {
	log.Printf("Looking for text in image %v", fileName)
	maxResults := 1
	image := &visionpb.Image{
		Source: &visionpb.ImageSource{
			GcsImageUri: fmt.Sprintf("gs://%s/%s", bucketName, fileName),
		},
	}
	annotations, err := visionClient.DetectTexts(ctx, image, &visionpb.ImageContext{}, maxResults)
	if err != nil {
		return fmt.Errorf("DetectTexts: %w", err)
	}
	text := ""
	if len(annotations) > 0 {
		text = annotations[0].Description
	}
	if len(annotations) == 0 || len(text) == 0 {
		log.Printf("No text detected in image %q. Returning early.", fileName)
		return nil
	}
	log.Printf("Extracted text %q from image (%d chars).", text, len(text))

	detectResponse, err := translateClient.DetectLanguage(ctx, []string{text})
	if err != nil {
		return fmt.Errorf("DetectLanguage: %w", err)
	}
	if len(detectResponse) == 0 || len(detectResponse[0]) == 0 {
		return fmt.Errorf("DetectLanguage gave empty response")
	}
	srcLang := detectResponse[0][0].Language.String()
	log.Printf("Detected language %q for text %q.", srcLang, text)

	// Submit a message to the bus for each target language
	for _, targetLang := range toLang {
		topicName := translateTopic
		if srcLang == targetLang || srcLang == "und" { // detection returns "und" for undefined language
			topicName = resultTopic
		}
		targetTag, err := language.Parse(targetLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		srcTag, err := language.Parse(srcLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		message, err := json.Marshal(ocrMessage{
			Text:     text,
			FileName: fileName,
			Lang:     targetTag,
			SrcLang:  srcTag,
		})
		if err != nil {
			return fmt.Errorf("json.Marshal: %w", err)
		}
		topic := pubsubClient.Topic(topicName)
		ok, err := topic.Exists(ctx)
		if err != nil {
			return fmt.Errorf("Exists: %w", err)
		}
		if !ok {
			topic, err = pubsubClient.CreateTopic(ctx, topicName)
			if err != nil {
				return fmt.Errorf("CreateTopic: %w", err)
			}
		}
		msg := &pubsub.Message{
			Data: []byte(message),
		}
		if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
			return fmt.Errorf("Get: %w", err)
		}
	}
	return nil
}

Java

private void detectText(String bucket, String filename) {
  logger.info("Looking for text in image " + filename);

  List<AnnotateImageRequest> visionRequests = new ArrayList<>();
  String gcsPath = String.format("gs://%s/%s", bucket, filename);

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  Feature textFeature = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
  AnnotateImageRequest visionRequest =
      AnnotateImageRequest.newBuilder().addFeatures(textFeature).setImage(img).build();
  visionRequests.add(visionRequest);

  // Detect text in an image using the Cloud Vision API
  AnnotateImageResponse visionResponse;
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    visionResponse = client.batchAnnotateImages(visionRequests).getResponses(0);
    if (visionResponse == null || !visionResponse.hasFullTextAnnotation()) {
      logger.info(String.format("Image %s contains no text", filename));
      return;
    }

    if (visionResponse.hasError()) {
      // Log error
      logger.log(
          Level.SEVERE, "Error in vision API call: " + visionResponse.getError().getMessage());
      return;
    }
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a Cloud Function)
    logger.log(Level.SEVERE, "Error detecting text: " + e.getMessage(), e);
    return;
  }

  String text = visionResponse.getFullTextAnnotation().getText();
  logger.info("Extracted text from image: " + text);

  // Detect language using the Cloud Translation API
  DetectLanguageRequest languageRequest =
      DetectLanguageRequest.newBuilder()
          .setParent(LOCATION_NAME)
          .setMimeType("text/plain")
          .setContent(text)
          .build();
  DetectLanguageResponse languageResponse;
  try (TranslationServiceClient client = TranslationServiceClient.create()) {
    languageResponse = client.detectLanguage(languageRequest);
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a function)
    logger.log(Level.SEVERE, "Error detecting language: " + e.getMessage(), e);
    return;
  }

  if (languageResponse.getLanguagesCount() == 0) {
    logger.info("No languages were detected for text: " + text);
    return;
  }

  String languageCode = languageResponse.getLanguages(0).getLanguageCode();
  logger.info(String.format("Detected language %s for file %s", languageCode, filename));

  // Send a Pub/Sub translation request for every language we're going to translate to
  for (String targetLanguage : TO_LANGS) {
    logger.info("Sending translation request for language " + targetLanguage);
    OcrTranslateApiMessage message = new OcrTranslateApiMessage(text, filename, targetLanguage);
    ByteString byteStr = ByteString.copyFrom(message.toPubsubData());
    PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
    try {
      publisher.publish(pubsubApiMessage).get();
    } catch (InterruptedException | ExecutionException e) {
      // Log error
      logger.log(Level.SEVERE, "Error publishing translation request: " + e.getMessage(), e);
      return;
    }
  }
}

Traduzione di testo

La seguente funzione traduce il testo estratto e mette in coda il testo tradotto per salvarlo di nuovo in Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the TRANSLATE_TOPIC environment variable. The function
 * translates text using the Google Translate API.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.translateText = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Translating text into ${lang}`);
  const [translation] = await translate.translate(text, lang);

  console.log('Translated text:', translation);

  const messageData = {
    text: translation,
    filename: filename,
    lang: lang,
  };

  await publishResult(process.env.RESULT_TOPIC, messageData);
  console.log(`Text translated to ${lang}`);
};

Python

def translate_text(event: dict, context: dict) -> None:
    """
    Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Translates the text in the message from the specified source language
    to the requested target language, then sends a message requesting another
    service save the result.

    Args:
        event: dictionary containing the PubSub event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    target_lang = validate_message(message, "lang")
    src_lang = validate_message(message, "src_lang")

    print(f"Translating text into {target_lang}.")
    translated_text = translate_client.translate(
        text, target_language=target_lang, source_language=src_lang
    )
    topic_name = os.environ["RESULT_TOPIC"]
    message = {
        "text": translated_text["translatedText"],
        "filename": filename,
        "lang": target_lang,
    }
    encoded_message = json.dumps(message).encode("utf-8")
    topic_path = publisher.topic_path(project_id, topic_name)
    future = publisher.publish(topic_path, data=encoded_message)
    future.result()

Vai


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/translate"
)

// TranslateText is executed when a message is published to the Cloud Pub/Sub
// topic specified by the TRANSLATE_TOPIC environment variable, and translates
// the text using the Google Translate API.
func TranslateText(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("setup: %w", err)
	}
	if event.Data == nil {
		return fmt.Errorf("empty data")
	}
	var message ocrMessage
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}

	log.Printf("Translating text into %s.", message.Lang.String())
	opts := translate.Options{
		Source: message.SrcLang,
	}
	translateResponse, err := translateClient.Translate(ctx, []string{message.Text}, message.Lang, &opts)
	if err != nil {
		return fmt.Errorf("Translate: %w", err)
	}
	if len(translateResponse) == 0 {
		return fmt.Errorf("Empty Translate response")
	}
	translatedText := translateResponse[0]

	messageData, err := json.Marshal(ocrMessage{
		Text:     translatedText.Text,
		FileName: message.FileName,
		Lang:     message.Lang,
		SrcLang:  message.SrcLang,
	})
	if err != nil {
		return fmt.Errorf("json.Marshal: %w", err)
	}

	topic := pubsubClient.Topic(resultTopic)
	ok, err := topic.Exists(ctx)
	if err != nil {
		return fmt.Errorf("Exists: %w", err)
	}
	if !ok {
		topic, err = pubsubClient.CreateTopic(ctx, resultTopic)
		if err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}
	msg := &pubsub.Message{
		Data: messageData,
	}
	if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
		return fmt.Errorf("Get: %w", err)
	}
	log.Printf("Sent translation: %q", translatedText.Text)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslateTextRequest;
import com.google.cloud.translate.v3.TranslateTextResponse;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.Message;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OcrTranslateText implements BackgroundFunction<Message> {
  private static final Logger logger = Logger.getLogger(OcrTranslateText.class.getName());

  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = getenv("GCP_PROJECT");
  private static final String RESULTS_TOPIC_NAME = getenv("RESULT_TOPIC");
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();

  private Publisher publisher;

  public OcrTranslateText() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, RESULTS_TOPIC_NAME)).build();
  }

  @Override
  public void accept(Message pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    String targetLang = ocrMessage.getLang();
    logger.info("Translating text into " + targetLang);

    // Translate text to target language
    String text = ocrMessage.getText();
    TranslateTextRequest request =
        TranslateTextRequest.newBuilder()
            .setParent(LOCATION_NAME)
            .setMimeType("text/plain")
            .setTargetLanguageCode(targetLang)
            .addContents(text)
            .build();

    TranslateTextResponse response;
    try (TranslationServiceClient client = TranslationServiceClient.create()) {
      response = client.translateText(request);
    } catch (IOException e) {
      // Log error (since IOException cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error translating text: " + e.getMessage(), e);
      return;
    }
    if (response.getTranslationsCount() == 0) {
      return;
    }

    String translatedText = response.getTranslations(0).getTranslatedText();
    logger.info("Translated text: " + translatedText);

    // Send translated text to (subsequent) Pub/Sub topic
    String filename = ocrMessage.getFilename();
    OcrTranslateApiMessage translateMessage = new OcrTranslateApiMessage(
        translatedText, filename, targetLang);
    try {
      ByteString byteStr = ByteString.copyFrom(translateMessage.toPubsubData());
      PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();

      publisher.publish(pubsubApiMessage).get();
      logger.info("Text translated to " + targetLang);
    } catch (InterruptedException | ExecutionException e) {
      // Log error (since these exception types cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error publishing translation save request: " + e.getMessage(), e);
    }
  }

  // Avoid ungraceful deployment failures due to unset environment variables.
  // If you get this warning you should redeploy with the variable set.
  private static String getenv(String name) {
    String value = System.getenv(name);
    if (value == null) {
      logger.warning("Environment variable " + name + " was not set");
      value = "MISSING";
    }
    return value;
  }
}

Salvare le traduzioni

Infine, la seguente funzione riceve il testo tradotto e lo salva nuovamente in Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the RESULT_TOPIC environment variable. The function saves
 * the data packet to a file in GCS.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.saveResult = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Received request to save file ${filename}`);

  const bucketName = process.env.RESULT_BUCKET;
  const newFilename = renameImageForSave(filename, lang);
  const file = storage.bucket(bucketName).file(newFilename);

  console.log(`Saving result to ${newFilename} in bucket ${bucketName}`);

  await file.save(text);
  console.log('File saved.');
};

Python

def save_result(event: dict, context: dict) -> None:
    """
    Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Args:
        event: dictionary containing the PubSub event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    lang = validate_message(message, "lang")

    print(f"Received request to save file {filename}.")

    bucket_name = os.environ["RESULT_BUCKET"]
    result_filename = f"{filename}_{lang}.txt"
    bucket = storage_client.get_bucket(bucket_name)
    blob = bucket.blob(result_filename)

    print(f"Saving result to {result_filename} in bucket {bucket_name}.")

    blob.upload_from_string(text)

    print("File saved.")

Vai


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"
)

// SaveResult is executed when a message is published to the Cloud Pub/Sub topic
// specified by the RESULT_TOPIC environment vairable, and saves the data packet
// to a file in GCS.
func SaveResult(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}
	var message ocrMessage
	if event.Data == nil {
		return fmt.Errorf("Empty data")
	}
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}
	log.Printf("Received request to save file %q.", message.FileName)

	resultFilename := fmt.Sprintf("%s_%s.txt", message.FileName, message.Lang)
	bucket := storageClient.Bucket(resultBucket)

	log.Printf("Saving result to %q in bucket %q.", resultFilename, resultBucket)

	w := bucket.Object(resultFilename).NewWriter(ctx)
	defer w.Close()
	fmt.Fprint(w, message.Text)

	log.Printf("File saved.")
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import functions.eventpojos.PubsubMessage;
import java.nio.charset.StandardCharsets;
import java.util.logging.Logger;

public class OcrSaveResult implements BackgroundFunction<PubsubMessage> {
  // TODO<developer> set this environment variable
  private static final String RESULT_BUCKET = System.getenv("RESULT_BUCKET");

  private static final Storage STORAGE = StorageOptions.getDefaultInstance().getService();
  private static final Logger logger = Logger.getLogger(OcrSaveResult.class.getName());

  @Override
  public void accept(PubsubMessage pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    logger.info("Received request to save file " +  ocrMessage.getFilename());

    String newFileName = String.format(
        "%s_to_%s.txt", ocrMessage.getFilename(), ocrMessage.getLang());

    // Save file to RESULT_BUCKET with name newFileNaem
    logger.info(String.format("Saving result to %s in bucket %s", newFileName, RESULT_BUCKET));
    BlobInfo blobInfo = BlobInfo.newBuilder(BlobId.of(RESULT_BUCKET, newFileName)).build();
    STORAGE.create(blobInfo, ocrMessage.getText().getBytes(StandardCharsets.UTF_8));
    logger.info("File saved");
  }
}

Eseguire il deployment delle funzioni

  1. Per il deployment della funzione di elaborazione delle immagini con un trigger Cloud Storage, esegui il seguente comando nella directory contenente il codice campione (o, nel caso di Java, il file pom.xml):

    Node.js

    gcloud functions deploy ocr-extract \
    --runtime nodejs22 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point processImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Node.js supportata per eseguire la funzione.

    Python

    gcloud functions deploy ocr-extract \
    --runtime python312 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point process_image \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Python supportata per eseguire la funzione.

    Vai

    gcloud functions deploy ocr-extract \
    --runtime go122 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point ProcessImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Go supportata per eseguire la funzione.

    Java

    gcloud functions deploy ocr-extract \
    --entry-point functions.OcrProcessImage \
    --runtime java21 \
    --memory 512MB \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Java supportata per eseguire la funzione.

    dove YOUR_IMAGE_BUCKET_NAME è il nome del bucket Cloud Storage in cui caricherai le immagini.

  2. Per il deployment della funzione di traduzione di testo con un trigger Pub/Sub, esegui il seguente comando nella directory contenente il codice campione (o, nel caso di Java, il file pom.xml):

    Node.js

    gcloud functions deploy ocr-translate \
    --runtime nodejs22 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Node.js supportata per eseguire la funzione.

    Python

    gcloud functions deploy ocr-translate \
    --runtime python312 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translate_text \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Python supportata per eseguire la funzione.

    Vai

    gcloud functions deploy ocr-translate \
    --runtime go122 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point TranslateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Go supportata per eseguire la funzione.

    Java

    gcloud functions deploy ocr-translate \
    --entry-point functions.OcrTranslateText \
    --runtime java21 \
    --memory 512MB \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Java supportata per eseguire la funzione.

  3. Per eseguire il deployment della funzione che salva i risultati in Cloud Storage con un trigger Cloud Pub/Sub, esegui il seguente comando nella directory contenente il codice campione (o, nel caso di Java, il file pom.xml):

    Node.js

    gcloud functions deploy ocr-save \
    --runtime nodejs22 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point saveResult \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Node.js supportata per eseguire la funzione.

    Python

    gcloud functions deploy ocr-save \
    --runtime python312 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point save_result \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione di Python supportata per eseguire la funzione.

    Vai

    gcloud functions deploy ocr-save \
    --runtime go122 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point SaveResult \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Go supportata per eseguire la funzione.

    Java

    gcloud functions deploy ocr-save \
    --entry-point functions.OcrSaveResult \
    --runtime java21 \
    --memory 512MB \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Utilizza il flag --runtime per specificare l'ID runtime di una versione Java supportata per eseguire la funzione.

Caricamento di un'immagine

  1. Carica un'immagine nel bucket Cloud Storage di immagini:

    gcloud storage cp PATH_TO_IMAGE gs://YOUR_IMAGE_BUCKET_NAME

    dove

    • PATH_TO_IMAGE è il percorso di un file immagine (che contiene testo) sul tuo sistema locale.
    • YOUR_IMAGE_BUCKET_NAME è il nome del bucket in cui carichi le immagini.

    Puoi scaricare una delle immagini dal progetto di esempio.

  2. Controlla i log per assicurarti che le esecuzioni siano state completate:

    gcloud functions logs read --limit 100
  3. Puoi visualizzare le traduzioni salvate nel bucket Cloud Storage che hai utilizzato per YOUR_RESULT_BUCKET_NAME.

Esegui la pulizia

Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questo tutorial, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.

Elimina il progetto

Il modo più semplice per eliminare la fatturazione è eliminare il progetto che hai creato per il tutorial.

Per eliminare il progetto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Eliminazione della funzione

L'eliminazione delle funzioni Cloud Run non rimuove le risorse archiviate in Cloud Storage.

Per eliminare le funzioni Cloud Run create in questo tutorial, esegui i seguenti comandi:

gcloud functions delete ocr-extract
gcloud functions delete ocr-translate
gcloud functions delete ocr-save

Puoi anche eliminare le funzioni Cloud Run dalla console Google Cloud.