Anleitung zur optischen Zeichenerkennung (OCR) (1. Generation)


Hier erfahren Sie, wie Sie optische Zeichenerkennung (Optical Character Recognition, OCR) in Google Cloud ausführen. In dieser Anleitung wird gezeigt, wie Sie Bilddateien in Cloud Storage hochladen, Text mit der Cloud Vision API aus den Bildern extrahieren, den Text mithilfe der Google Cloud Translation API übersetzen und Ihre Übersetzungen wieder in Cloud Storage speichern. Pub/Sub wird verwendet, um verschiedene Aufgaben in eine Warteschlange zu stellen und die entsprechenden Cloud Run Functions-Funktionen für ihre Ausführung auszulösen.

Weitere Informationen zum Senden einer Anfrage zur Texterkennung (OCR) finden Sie unter Text in Bildern erkennen, Handschrift in Bildern erkennen und Text in Dateien erkennen (PDF/TIFF).

Ziele

Kosten

In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:

  • Cloud Run functions
  • Pub/Sub
  • Cloud Storage
  • Cloud Translation API
  • Cloud Vision

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Vorbereitung

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Make sure that billing is enabled for your Google Cloud project.

  9. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init
  12. Wenn Sie die gcloud CLI bereits installiert haben, aktualisieren Sie sie mit dem folgenden Befehl:

    gcloud components update
  13. Bereiten Sie die Entwicklungsumgebung vor.

Datenfluss visualisieren

Der Datenfluss in der Anwendung der OCR-Anleitung umfasst mehrere Schritte:

  1. Ein Bild, das Text in einer beliebigen Sprache enthält, wird in Cloud Storage hochgeladen.
  2. Eine Cloud Run Functions-Funktion wird ausgelöst, die mit der Vision API den Text extrahiert und die Ausgangssprache erkennt.
  3. Der Text wird für die Übersetzung durch Veröffentlichen einer Nachricht in einem Pub/Sub-Thema in die Warteschlange gestellt. Für jede Zielsprache, die nicht der Ausgangssprache entspricht, wird eine Übersetzung in die Warteschlange gestellt.
  4. Wenn eine Zielsprache mit der Ausgangssprache übereinstimmt, wird die Übersetzungswarteschlange übersprungen und Text wird an die Ergebniswarteschlange – ein anderes Pub/Sub-Thema – gesendet.
  5. Eine Cloud Run Functions-Funktion verwendet die Translation API, um den Text in der Übersetzungswarteschlange zu übersetzen. Die Übersetzung wird dann an die Ergebniswarteschlange gesendet.
  6. Eine andere Cloud Run Functions-Funktion speichert den übersetzten Text aus der Ergebniswarteschlange in Cloud Storage.
  7. Die Ergebnisse sind in Cloud Storage für jede Übersetzung als Textdateien zu finden.

Eine grafische Darstellung des Ablaufs:

Anwendung vorbereiten

  1. Erstellen Sie einen Cloud Storage-Bucket, auf den Bilder hochgeladen werden sollen, wobei YOUR_IMAGE_BUCKET_NAME ein global eindeutiger Bucket-Name ist:

    gcloud storage buckets create gs://YOUR_IMAGE_BUCKET_NAME
  2. Erstellen Sie einen Cloud Storage-Bucket, in dem Textübersetzungen gespeichert werden sollen, wobei YOUR_RESULT_BUCKET_NAME ein global eindeutiger Bucket-Name ist:

    gcloud storage buckets create gs://YOUR_RESULT_BUCKET_NAME
  3. Erstellen Sie ein Pub/Sub-Thema, in dem Übersetzungsanfragen veröffentlicht werden sollen, wobei YOUR_TRANSLATE_TOPIC_NAME der Name des Themas für die Übersetzungsanfrage ist:

    gcloud pubsub topics create YOUR_TRANSLATE_TOPIC_NAME
  4. Erstellen Sie ein Pub/Sub-Thema, in dem die fertigen Übersetzungsergebnisse veröffentlicht werden sollen, wobei YOUR_RESULT_TOPIC_NAME der Name des Themas für die Übersetzungsergebnisse ist:

    gcloud pubsub topics create YOUR_RESULT_TOPIC_NAME
  5. Klonen Sie das Repository der Beispiel-App auf Ihren lokalen Computer:

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

    Go

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

  6. Wechseln Sie in das Verzeichnis, das den Beispielcode für Cloud Run-Funktionen enthält:

    Node.js

    cd nodejs-docs-samples/functions/ocr/app/

    Python

    cd python-docs-samples/functions/ocr/app/

    Go

    cd golang-samples/functions/ocr/app/

    Java

    cd java-docs-samples/functions/ocr/ocr-process-image/

Code verstehen

Abhängigkeiten importieren

Die Anwendung muss mehrere Abhängigkeiten importieren, um mit den Google Cloud Platform-Diensten zu kommunizieren:

Node.js

// Get a reference to the Pub/Sub component
const {PubSub} = require('@google-cloud/pubsub');
const pubsub = new PubSub();
// Get a reference to the Cloud Storage component
const {Storage} = require('@google-cloud/storage');
const storage = new Storage();

// Get a reference to the Cloud Vision API component
const Vision = require('@google-cloud/vision');
const vision = new Vision.ImageAnnotatorClient();

// Get a reference to the Translate API component
const {Translate} = require('@google-cloud/translate').v2;
const translate = new Translate();

Python

import base64
import json
import os
from typing import Dict, TypeVar

from google.cloud import pubsub_v1
from google.cloud import storage
from google.cloud import translate_v2 as translate
from google.cloud import vision

vision_client = vision.ImageAnnotatorClient()
translate_client = translate.Client()
publisher = pubsub_v1.PublisherClient()
storage_client = storage.Client()

project_id = os.environ["GCP_PROJECT"]

Go


// Package ocr contains Go samples for creating OCR
// (Optical Character Recognition) Cloud functions.
package ocr

import (
	"context"
	"fmt"
	"os"
	"strings"
	"time"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/storage"
	"cloud.google.com/go/translate"
	vision "cloud.google.com/go/vision/apiv1"
	"golang.org/x/text/language"
)

type ocrMessage struct {
	Text     string       `json:"text"`
	FileName string       `json:"fileName"`
	Lang     language.Tag `json:"lang"`
	SrcLang  language.Tag `json:"srcLang"`
}

// GCSEvent is the payload of a GCS event.
type GCSEvent struct {
	Bucket         string    `json:"bucket"`
	Name           string    `json:"name"`
	Metageneration string    `json:"metageneration"`
	ResourceState  string    `json:"resourceState"`
	TimeCreated    time.Time `json:"timeCreated"`
	Updated        time.Time `json:"updated"`
}

// PubSubMessage is the payload of a Pub/Sub event.
// See the documentation for more details:
// https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
type PubSubMessage struct {
	Data []byte `json:"data"`
}

var (
	visionClient    *vision.ImageAnnotatorClient
	translateClient *translate.Client
	pubsubClient    *pubsub.Client
	storageClient   *storage.Client

	projectID      string
	resultBucket   string
	resultTopic    string
	toLang         []string
	translateTopic string
)

func setup(ctx context.Context) error {
	projectID = os.Getenv("GCP_PROJECT")
	resultBucket = os.Getenv("RESULT_BUCKET")
	resultTopic = os.Getenv("RESULT_TOPIC")
	toLang = strings.Split(os.Getenv("TO_LANG"), ",")
	translateTopic = os.Getenv("TRANSLATE_TOPIC")

	var err error // Prevent shadowing clients with :=.

	if visionClient == nil {
		visionClient, err = vision.NewImageAnnotatorClient(ctx)
		if err != nil {
			return fmt.Errorf("vision.NewImageAnnotatorClient: %w", err)
		}
	}

	if translateClient == nil {
		translateClient, err = translate.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if pubsubClient == nil {
		pubsubClient, err = pubsub.NewClient(ctx, projectID)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if storageClient == nil {
		storageClient, err = storage.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("storage.NewClient: %w", err)
		}
	}
	return nil
}

Java

public class OcrProcessImage implements BackgroundFunction<GcsEvent> {
  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = System.getenv("GCP_PROJECT");
  private static final String TRANSLATE_TOPIC_NAME = System.getenv("TRANSLATE_TOPIC");
  private static final String[] TO_LANGS = System.getenv("TO_LANG").split(",");

  private static final Logger logger = Logger.getLogger(OcrProcessImage.class.getName());
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
  private Publisher publisher;

  public OcrProcessImage() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, TRANSLATE_TOPIC_NAME)).build();
  }
}

Bilder verarbeiten

Die folgende Funktion dient dazu, eine hochgeladene Bilddatei aus Cloud Storage auszulesen und eine Funktion aufzurufen, mit der erkannt wird, ob das Bild Text enthält:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a file is uploaded to the Cloud Storage bucket you created
 * for uploading images.
 *
 * @param {object} event A Google Cloud Storage File object.
 */
exports.processImage = async event => {
  const {bucket, name} = event;

  if (!bucket) {
    throw new Error(
      'Bucket not provided. Make sure you have a "bucket" property in your request'
    );
  }
  if (!name) {
    throw new Error(
      'Filename not provided. Make sure you have a "name" property in your request'
    );
  }

  await detectText(bucket, name);
  console.log(`File ${name} processed.`);
};

Python

def process_image(file_info: dict, context: dict) -> None:
    """Cloud Function triggered by Cloud Storage when a file is changed.

    Args:
        file_info: Metadata of the changed file, provided by the
            triggering Cloud Storage event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    bucket = validate_message(file_info, "bucket")
    name = validate_message(file_info, "name")

    detect_text(bucket, name)

    print("File {} processed.".format(file_info["name"]))

Go


package ocr

import (
	"context"
	"fmt"
	"log"
)

// ProcessImage is executed when a file is uploaded to the Cloud Storage bucket you
// created for uploading images. It runs detectText, which processes the image for text.
func ProcessImage(ctx context.Context, event GCSEvent) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}
	if event.Bucket == "" {
		return fmt.Errorf("empty file.Bucket")
	}
	if event.Name == "" {
		return fmt.Errorf("empty file.Name")
	}
	if err := detectText(ctx, event.Bucket, event.Name); err != nil {
		return fmt.Errorf("detectText: %w", err)
	}
	log.Printf("File %s processed.", event.Name)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.DetectLanguageRequest;
import com.google.cloud.translate.v3.DetectLanguageResponse;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.GcsEvent;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

  @Override
  public void accept(GcsEvent gcsEvent, Context context) {

    // Validate parameters
    String bucket = gcsEvent.getBucket();
    if (bucket == null) {
      throw new IllegalArgumentException("Missing bucket parameter");
    }
    String filename = gcsEvent.getName();
    if (filename == null) {
      throw new IllegalArgumentException("Missing name parameter");
    }

    detectText(bucket, filename);
  }
}

Die folgende Funktion extrahiert mithilfe der Vision API Text aus dem Bild und stellt den zu übersetzenden Text in eine Warteschlange:

Node.js

/**
 * Detects the text in an image using the Google Vision API.
 *
 * @param {string} bucketName Cloud Storage bucket name.
 * @param {string} filename Cloud Storage file name.
 * @returns {Promise}
 */
const detectText = async (bucketName, filename) => {
  console.log(`Looking for text in image ${filename}`);
  const [textDetections] = await vision.textDetection(
    `gs://${bucketName}/${filename}`
  );
  const [annotation] = textDetections.textAnnotations;
  const text = annotation ? annotation.description.trim() : '';
  console.log('Extracted text from image:', text);

  let [translateDetection] = await translate.detect(text);
  if (Array.isArray(translateDetection)) {
    [translateDetection] = translateDetection;
  }
  console.log(
    `Detected language "${translateDetection.language}" for ${filename}`
  );

  // Submit a message to the bus for each language we're going to translate to
  const TO_LANGS = process.env.TO_LANG.split(',');
  const topicName = process.env.TRANSLATE_TOPIC;

  const tasks = TO_LANGS.map(lang => {
    const messageData = {
      text: text,
      filename: filename,
      lang: lang,
    };

    // Helper function that publishes translation result to a Pub/Sub topic
    // For more information on publishing Pub/Sub messages, see this page:
    //   https://cloud.google.com/pubsub/docs/publisher
    return publishResult(topicName, messageData);
  });

  return Promise.all(tasks);
};

Python

def detect_text(bucket: str, filename: str) -> None:
    """
    Extract the text from an image uploaded to Cloud Storage.

    Extract the text from an image uploaded to Cloud Storage, then
    publish messages requesting subscribing services translate the text
    to each target language and save the result.

    Args:
        bucket: name of GCS bucket in which the file is stored.
        filename: name of the file to be read.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    print("Looking for text in image {}".format(filename))

    futures = []

    image = vision.Image(
        source=vision.ImageSource(gcs_image_uri=f"gs://{bucket}/{filename}")
    )
    text_detection_response = vision_client.text_detection(image=image)
    annotations = text_detection_response.text_annotations
    if len(annotations) > 0:
        text = annotations[0].description
    else:
        text = ""
    print(f"Extracted text {text} from image ({len(text)} chars).")

    detect_language_response = translate_client.detect_language(text)
    src_lang = detect_language_response["language"]
    print(f"Detected language {src_lang} for text {text}.")

    # Submit a message to the bus for each target language
    to_langs = os.environ["TO_LANG"].split(",")
    for target_lang in to_langs:
        topic_name = os.environ["TRANSLATE_TOPIC"]
        if src_lang == target_lang or src_lang == "und":
            topic_name = os.environ["RESULT_TOPIC"]
        message = {
            "text": text,
            "filename": filename,
            "lang": target_lang,
            "src_lang": src_lang,
        }
        message_data = json.dumps(message).encode("utf-8")
        topic_path = publisher.topic_path(project_id, topic_name)
        future = publisher.publish(topic_path, data=message_data)
        futures.append(future)
    for future in futures:
        future.result()

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
	"golang.org/x/text/language"
)

// detectText detects the text in an image using the Google Vision API.
func detectText(ctx context.Context, bucketName, fileName string) error {
	log.Printf("Looking for text in image %v", fileName)
	maxResults := 1
	image := &visionpb.Image{
		Source: &visionpb.ImageSource{
			GcsImageUri: fmt.Sprintf("gs://%s/%s", bucketName, fileName),
		},
	}
	annotations, err := visionClient.DetectTexts(ctx, image, &visionpb.ImageContext{}, maxResults)
	if err != nil {
		return fmt.Errorf("DetectTexts: %w", err)
	}
	text := ""
	if len(annotations) > 0 {
		text = annotations[0].Description
	}
	if len(annotations) == 0 || len(text) == 0 {
		log.Printf("No text detected in image %q. Returning early.", fileName)
		return nil
	}
	log.Printf("Extracted text %q from image (%d chars).", text, len(text))

	detectResponse, err := translateClient.DetectLanguage(ctx, []string{text})
	if err != nil {
		return fmt.Errorf("DetectLanguage: %w", err)
	}
	if len(detectResponse) == 0 || len(detectResponse[0]) == 0 {
		return fmt.Errorf("DetectLanguage gave empty response")
	}
	srcLang := detectResponse[0][0].Language.String()
	log.Printf("Detected language %q for text %q.", srcLang, text)

	// Submit a message to the bus for each target language
	for _, targetLang := range toLang {
		topicName := translateTopic
		if srcLang == targetLang || srcLang == "und" { // detection returns "und" for undefined language
			topicName = resultTopic
		}
		targetTag, err := language.Parse(targetLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		srcTag, err := language.Parse(srcLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		message, err := json.Marshal(ocrMessage{
			Text:     text,
			FileName: fileName,
			Lang:     targetTag,
			SrcLang:  srcTag,
		})
		if err != nil {
			return fmt.Errorf("json.Marshal: %w", err)
		}
		topic := pubsubClient.Topic(topicName)
		ok, err := topic.Exists(ctx)
		if err != nil {
			return fmt.Errorf("Exists: %w", err)
		}
		if !ok {
			topic, err = pubsubClient.CreateTopic(ctx, topicName)
			if err != nil {
				return fmt.Errorf("CreateTopic: %w", err)
			}
		}
		msg := &pubsub.Message{
			Data: []byte(message),
		}
		if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
			return fmt.Errorf("Get: %w", err)
		}
	}
	return nil
}

Java

private void detectText(String bucket, String filename) {
  logger.info("Looking for text in image " + filename);

  List<AnnotateImageRequest> visionRequests = new ArrayList<>();
  String gcsPath = String.format("gs://%s/%s", bucket, filename);

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  Feature textFeature = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
  AnnotateImageRequest visionRequest =
      AnnotateImageRequest.newBuilder().addFeatures(textFeature).setImage(img).build();
  visionRequests.add(visionRequest);

  // Detect text in an image using the Cloud Vision API
  AnnotateImageResponse visionResponse;
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    visionResponse = client.batchAnnotateImages(visionRequests).getResponses(0);
    if (visionResponse == null || !visionResponse.hasFullTextAnnotation()) {
      logger.info(String.format("Image %s contains no text", filename));
      return;
    }

    if (visionResponse.hasError()) {
      // Log error
      logger.log(
          Level.SEVERE, "Error in vision API call: " + visionResponse.getError().getMessage());
      return;
    }
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a Cloud Function)
    logger.log(Level.SEVERE, "Error detecting text: " + e.getMessage(), e);
    return;
  }

  String text = visionResponse.getFullTextAnnotation().getText();
  logger.info("Extracted text from image: " + text);

  // Detect language using the Cloud Translation API
  DetectLanguageRequest languageRequest =
      DetectLanguageRequest.newBuilder()
          .setParent(LOCATION_NAME)
          .setMimeType("text/plain")
          .setContent(text)
          .build();
  DetectLanguageResponse languageResponse;
  try (TranslationServiceClient client = TranslationServiceClient.create()) {
    languageResponse = client.detectLanguage(languageRequest);
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a function)
    logger.log(Level.SEVERE, "Error detecting language: " + e.getMessage(), e);
    return;
  }

  if (languageResponse.getLanguagesCount() == 0) {
    logger.info("No languages were detected for text: " + text);
    return;
  }

  String languageCode = languageResponse.getLanguages(0).getLanguageCode();
  logger.info(String.format("Detected language %s for file %s", languageCode, filename));

  // Send a Pub/Sub translation request for every language we're going to translate to
  for (String targetLanguage : TO_LANGS) {
    logger.info("Sending translation request for language " + targetLanguage);
    OcrTranslateApiMessage message = new OcrTranslateApiMessage(text, filename, targetLanguage);
    ByteString byteStr = ByteString.copyFrom(message.toPubsubData());
    PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
    try {
      publisher.publish(pubsubApiMessage).get();
    } catch (InterruptedException | ExecutionException e) {
      // Log error
      logger.log(Level.SEVERE, "Error publishing translation request: " + e.getMessage(), e);
      return;
    }
  }
}

Text übersetzen

Mit der folgenden Funktion wird der extrahierte Text übersetzt und der übersetzte Text in die Warteschlange gestellt, um wieder in Cloud Storage gespeichert zu werden:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the TRANSLATE_TOPIC environment variable. The function
 * translates text using the Google Translate API.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.translateText = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Translating text into ${lang}`);
  const [translation] = await translate.translate(text, lang);

  console.log('Translated text:', translation);

  const messageData = {
    text: translation,
    filename: filename,
    lang: lang,
  };

  await publishResult(process.env.RESULT_TOPIC, messageData);
  console.log(`Text translated to ${lang}`);
};

Python

def translate_text(event: dict, context: dict) -> None:
    """
    Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Translates the text in the message from the specified source language
    to the requested target language, then sends a message requesting another
    service save the result.

    Args:
        event: dictionary containing the PubSub event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    target_lang = validate_message(message, "lang")
    src_lang = validate_message(message, "src_lang")

    print(f"Translating text into {target_lang}.")
    translated_text = translate_client.translate(
        text, target_language=target_lang, source_language=src_lang
    )
    topic_name = os.environ["RESULT_TOPIC"]
    message = {
        "text": translated_text["translatedText"],
        "filename": filename,
        "lang": target_lang,
    }
    encoded_message = json.dumps(message).encode("utf-8")
    topic_path = publisher.topic_path(project_id, topic_name)
    future = publisher.publish(topic_path, data=encoded_message)
    future.result()

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/translate"
)

// TranslateText is executed when a message is published to the Cloud Pub/Sub
// topic specified by the TRANSLATE_TOPIC environment variable, and translates
// the text using the Google Translate API.
func TranslateText(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("setup: %w", err)
	}
	if event.Data == nil {
		return fmt.Errorf("empty data")
	}
	var message ocrMessage
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}

	log.Printf("Translating text into %s.", message.Lang.String())
	opts := translate.Options{
		Source: message.SrcLang,
	}
	translateResponse, err := translateClient.Translate(ctx, []string{message.Text}, message.Lang, &opts)
	if err != nil {
		return fmt.Errorf("Translate: %w", err)
	}
	if len(translateResponse) == 0 {
		return fmt.Errorf("Empty Translate response")
	}
	translatedText := translateResponse[0]

	messageData, err := json.Marshal(ocrMessage{
		Text:     translatedText.Text,
		FileName: message.FileName,
		Lang:     message.Lang,
		SrcLang:  message.SrcLang,
	})
	if err != nil {
		return fmt.Errorf("json.Marshal: %w", err)
	}

	topic := pubsubClient.Topic(resultTopic)
	ok, err := topic.Exists(ctx)
	if err != nil {
		return fmt.Errorf("Exists: %w", err)
	}
	if !ok {
		topic, err = pubsubClient.CreateTopic(ctx, resultTopic)
		if err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}
	msg := &pubsub.Message{
		Data: messageData,
	}
	if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
		return fmt.Errorf("Get: %w", err)
	}
	log.Printf("Sent translation: %q", translatedText.Text)
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslateTextRequest;
import com.google.cloud.translate.v3.TranslateTextResponse;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.Message;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OcrTranslateText implements BackgroundFunction<Message> {
  private static final Logger logger = Logger.getLogger(OcrTranslateText.class.getName());

  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = getenv("GCP_PROJECT");
  private static final String RESULTS_TOPIC_NAME = getenv("RESULT_TOPIC");
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();

  private Publisher publisher;

  public OcrTranslateText() throws IOException {
    publisher = Publisher.newBuilder(
        ProjectTopicName.of(PROJECT_ID, RESULTS_TOPIC_NAME)).build();
  }

  @Override
  public void accept(Message pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    String targetLang = ocrMessage.getLang();
    logger.info("Translating text into " + targetLang);

    // Translate text to target language
    String text = ocrMessage.getText();
    TranslateTextRequest request =
        TranslateTextRequest.newBuilder()
            .setParent(LOCATION_NAME)
            .setMimeType("text/plain")
            .setTargetLanguageCode(targetLang)
            .addContents(text)
            .build();

    TranslateTextResponse response;
    try (TranslationServiceClient client = TranslationServiceClient.create()) {
      response = client.translateText(request);
    } catch (IOException e) {
      // Log error (since IOException cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error translating text: " + e.getMessage(), e);
      return;
    }
    if (response.getTranslationsCount() == 0) {
      return;
    }

    String translatedText = response.getTranslations(0).getTranslatedText();
    logger.info("Translated text: " + translatedText);

    // Send translated text to (subsequent) Pub/Sub topic
    String filename = ocrMessage.getFilename();
    OcrTranslateApiMessage translateMessage = new OcrTranslateApiMessage(
        translatedText, filename, targetLang);
    try {
      ByteString byteStr = ByteString.copyFrom(translateMessage.toPubsubData());
      PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();

      publisher.publish(pubsubApiMessage).get();
      logger.info("Text translated to " + targetLang);
    } catch (InterruptedException | ExecutionException e) {
      // Log error (since these exception types cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error publishing translation save request: " + e.getMessage(), e);
    }
  }

  // Avoid ungraceful deployment failures due to unset environment variables.
  // If you get this warning you should redeploy with the variable set.
  private static String getenv(String name) {
    String value = System.getenv(name);
    if (value == null) {
      logger.warning("Environment variable " + name + " was not set");
      value = "MISSING";
    }
    return value;
  }
}

Übersetzungen speichern

Mit der folgenden Funktion wird der übersetzte Text erhalten und wieder in Cloud Storage gespeichert:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the RESULT_TOPIC environment variable. The function saves
 * the data packet to a file in GCS.
 *
 * @param {object} event The Cloud Pub/Sub Message object.
 * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
 * Message. This property will be a base64-encoded string that you must decode.
 */
exports.saveResult = async event => {
  const pubsubData = event.data;
  const jsonStr = Buffer.from(pubsubData, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Received request to save file ${filename}`);

  const bucketName = process.env.RESULT_BUCKET;
  const newFilename = renameImageForSave(filename, lang);
  const file = storage.bucket(bucketName).file(newFilename);

  console.log(`Saving result to ${newFilename} in bucket ${bucketName}`);

  await file.save(text);
  console.log('File saved.');
};

Python

def save_result(event: dict, context: dict) -> None:
    """
    Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Args:
        event: dictionary containing the PubSub event.
        context: a dictionary containing metadata about the event.

    Returns:
        None; the output is written to stdout and Stackdriver Logging.
    """
    if event.get("data"):
        message_data = base64.b64decode(event["data"]).decode("utf-8")
        message = json.loads(message_data)
    else:
        raise ValueError("Data sector is missing in the Pub/Sub message.")

    text = validate_message(message, "text")
    filename = validate_message(message, "filename")
    lang = validate_message(message, "lang")

    print(f"Received request to save file {filename}.")

    bucket_name = os.environ["RESULT_BUCKET"]
    result_filename = f"{filename}_{lang}.txt"
    bucket = storage_client.get_bucket(bucket_name)
    blob = bucket.blob(result_filename)

    print(f"Saving result to {result_filename} in bucket {bucket_name}.")

    blob.upload_from_string(text)

    print("File saved.")

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"
)

// SaveResult is executed when a message is published to the Cloud Pub/Sub topic
// specified by the RESULT_TOPIC environment vairable, and saves the data packet
// to a file in GCS.
func SaveResult(ctx context.Context, event PubSubMessage) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}
	var message ocrMessage
	if event.Data == nil {
		return fmt.Errorf("Empty data")
	}
	if err := json.Unmarshal(event.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}
	log.Printf("Received request to save file %q.", message.FileName)

	resultFilename := fmt.Sprintf("%s_%s.txt", message.FileName, message.Lang)
	bucket := storageClient.Bucket(resultBucket)

	log.Printf("Saving result to %q in bucket %q.", resultFilename, resultBucket)

	w := bucket.Object(resultFilename).NewWriter(ctx)
	defer w.Close()
	fmt.Fprint(w, message.Text)

	log.Printf("File saved.")
	return nil
}

Java


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import functions.eventpojos.PubsubMessage;
import java.nio.charset.StandardCharsets;
import java.util.logging.Logger;

public class OcrSaveResult implements BackgroundFunction<PubsubMessage> {
  // TODO<developer> set this environment variable
  private static final String RESULT_BUCKET = System.getenv("RESULT_BUCKET");

  private static final Storage STORAGE = StorageOptions.getDefaultInstance().getService();
  private static final Logger logger = Logger.getLogger(OcrSaveResult.class.getName());

  @Override
  public void accept(PubsubMessage pubSubMessage, Context context) {
    OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
        pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));

    logger.info("Received request to save file " +  ocrMessage.getFilename());

    String newFileName = String.format(
        "%s_to_%s.txt", ocrMessage.getFilename(), ocrMessage.getLang());

    // Save file to RESULT_BUCKET with name newFileNaem
    logger.info(String.format("Saving result to %s in bucket %s", newFileName, RESULT_BUCKET));
    BlobInfo blobInfo = BlobInfo.newBuilder(BlobId.of(RESULT_BUCKET, newFileName)).build();
    STORAGE.create(blobInfo, ocrMessage.getText().getBytes(StandardCharsets.UTF_8));
    logger.info("File saved");
  }
}

Funktionen bereitstellen

  1. Führen Sie diesen Befehl im dem Verzeichnis mit dem Beispielcode (oder im Fall von Java die Datei pom.xml) aus, um die Bildverarbeitungsfunktion mit einem Cloud Storage-Trigger bereitzustellen:

    Node.js

    gcloud functions deploy ocr-extract \
    --runtime nodejs22 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point processImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Node.js-Version anzugeben und die Funktion auszuführen.

    Python

    gcloud functions deploy ocr-extract \
    --runtime python312 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point process_image \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Python-Version anzugeben und die Funktion auszuführen.

    Go

    gcloud functions deploy ocr-extract \
    --runtime go122 \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --entry-point ProcessImage \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Go-Version anzugeben und die Funktion auszuführen.

    Java

    gcloud functions deploy ocr-extract \
    --entry-point functions.OcrProcessImage \
    --runtime java21 \
    --memory 512MB \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Java-Version anzugeben und die Funktion auszuführen.

    Dabei ist YOUR_IMAGE_BUCKET_NAME der Name des Cloud Storage-Buckets, in den Sie die Images hochladen.

  2. Führen Sie diesen Befehl in dem Verzeichnis mit dem Beispielcode (oder im Fall von Java die Datei pom.xml) aus, um die Textübersetzungsfunktion mit einem Pub/Sub-Trigger bereitzustellen:

    Node.js

    gcloud functions deploy ocr-translate \
    --runtime nodejs22 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Node.js-Version anzugeben und die Funktion auszuführen.

    Python

    gcloud functions deploy ocr-translate \
    --runtime python312 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point translate_text \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Python-Version anzugeben und die Funktion auszuführen.

    Go

    gcloud functions deploy ocr-translate \
    --runtime go122 \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --entry-point TranslateText \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Go-Version anzugeben und die Funktion auszuführen.

    Java

    gcloud functions deploy ocr-translate \
    --entry-point functions.OcrTranslateText \
    --runtime java21 \
    --memory 512MB \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Java-Version anzugeben und die Funktion auszuführen.

  3. Führen Sie diesen Befehl in dem Verzeichnis mit dem Beispielcode (oder im Fall von Java die Datei pom.xml) aus, um die Funktion bereitzustellen, die Ergebnisse mit einem Cloud Pub/Sub-Trigger in Cloud Storage speichert:

    Node.js

    gcloud functions deploy ocr-save \
    --runtime nodejs22 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point saveResult \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Node.js-Version anzugeben und die Funktion auszuführen.

    Python

    gcloud functions deploy ocr-save \
    --runtime python312 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point save_result \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Python-Version anzugeben und die Funktion auszuführen.

    Go

    gcloud functions deploy ocr-save \
    --runtime go122 \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --entry-point SaveResult \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Go-Version anzugeben und die Funktion auszuführen.

    Java

    gcloud functions deploy ocr-save \
    --entry-point functions.OcrSaveResult \
    --runtime java21 \
    --memory 512MB \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Verwenden Sie das Flag --runtime, um die Laufzeit-ID einer unterstützten Java-Version anzugeben und die Funktion auszuführen.

Bild hochladen

  1. Laden Sie ein Bild in den Cloud Storage-Bucket für Bilder hoch:

    gcloud storage cp PATH_TO_IMAGE gs://YOUR_IMAGE_BUCKET_NAME

    Dabei gilt:

    • PATH_TO_IMAGE ist ein Pfad zu einer Bilddatei (u. a. mit Text) auf Ihrem lokalen System.
    • YOUR_IMAGE_BUCKET_NAME ist der Name des Buckets, in den Sie Bilder hochladen.

    Sie können eines der Bilder aus dem Beispielprojekt herunterladen.

  2. Prüfen Sie in den Logs, ob die Ausführungen abgeschlossen wurden:

    gcloud functions logs read --limit 100
  3. Sie können die gespeicherten Übersetzungen in dem Cloud Storage-Bucket anzeigen, den Sie für YOUR_RESULT_BUCKET_NAME verwendet haben.

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

Projekt löschen

Am einfachsten vermeiden Sie weitere Kosten, wenn Sie das zum Ausführen der Anleitung erstellte Projekt löschen.

So löschen Sie das Projekt:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Funktion löschen

Durch das Löschen von Cloud Run-Funktionen werden keine in Cloud Storage gespeicherten Ressourcen entfernt.

Führen Sie die folgenden Befehle aus, um die in dieser Anleitung erstellten Cloud Run Functions-Funktionen zu löschen:

gcloud functions delete ocr-extract
gcloud functions delete ocr-translate
gcloud functions delete ocr-save

Sie können Cloud Run-Funktionen auch über die Google Cloud Console löschen.