Processar um documento usando um processador de OCR de documentos

Envia uma solicitação de processamento on-line para um processador de OCR de documentos e analisa a resposta. Extrai e imprime o texto completo, as dimensões da página, os idiomas detectados, os parágrafos, os blocos, as linhas e os tokens.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Java

Para mais informações, consulte a documentação de referência da API Document AI Java.

Para autenticar na Document AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.documentai.v1beta3.Document;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1beta3.ProcessRequest;
import com.google.cloud.documentai.v1beta3.ProcessResponse;
import com.google.cloud.documentai.v1beta3.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ProcessOcrDocument {
  public static void processOcrDocument()
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processerId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    processOcrDocument(projectId, location, processerId, filePath);
  }

  public static void processOcrDocument(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      System.out.println("Document processing complete.");

      // Read the text recognition output from the processor
      // For a full list of Document object attributes,
      // please reference this page:
      // https://googleapis.dev/java/google-cloud-document-ai/latest/index.html

      // Get all of the document text as one big string
      String text = documentResponse.getText();
      System.out.printf("Full document text: '%s'\n", escapeNewlines(text));

      // Read the text recognition output from the processor
      List<Document.Page> pages = documentResponse.getPagesList();
      System.out.printf("There are %s page(s) in this document.\n", pages.size());

      for (Document.Page page : pages) {
        System.out.printf("Page %d:\n", page.getPageNumber());
        printPageDimensions(page.getDimension());
        printDetectedLanguages(page.getDetectedLanguagesList());
        printParagraphs(page.getParagraphsList(), text);
        printBlocks(page.getBlocksList(), text);
        printLines(page.getLinesList(), text);
        printTokens(page.getTokensList(), text);
      }
    }
  }

  private static void printPageDimensions(Document.Page.Dimension dimension) {
    String unit = dimension.getUnit();
    System.out.printf("    Width: %.1f %s\n", dimension.getWidth(), unit);
    System.out.printf("    Height: %.1f %s\n", dimension.getHeight(), unit);
  }

  private static void printDetectedLanguages(
      List<Document.Page.DetectedLanguage> detectedLangauges) {
    System.out.println("    Detected languages:");
    for (Document.Page.DetectedLanguage detectedLanguage : detectedLangauges) {
      String languageCode = detectedLanguage.getLanguageCode();
      float confidence = detectedLanguage.getConfidence();
      System.out.printf("        %s (%.2f%%)\n", languageCode, confidence * 100.0);
    }
  }

  private static void printParagraphs(List<Document.Page.Paragraph> paragraphs, String text) {
    System.out.printf("    %d paragraphs detected:\n", paragraphs.size());
    Document.Page.Paragraph firstParagraph = paragraphs.get(0);
    String firstParagraphText = getLayoutText(firstParagraph.getLayout().getTextAnchor(), text);
    System.out.printf("        First paragraph text: %s\n", escapeNewlines(firstParagraphText));
    Document.Page.Paragraph lastParagraph = paragraphs.get(paragraphs.size() - 1);
    String lastParagraphText = getLayoutText(lastParagraph.getLayout().getTextAnchor(), text);
    System.out.printf("        Last paragraph text: %s\n", escapeNewlines(lastParagraphText));
  }

  private static void printBlocks(List<Document.Page.Block> blocks, String text) {
    System.out.printf("    %d blocks detected:\n", blocks.size());
    Document.Page.Block firstBlock = blocks.get(0);
    String firstBlockText = getLayoutText(firstBlock.getLayout().getTextAnchor(), text);
    System.out.printf("        First block text: %s\n", escapeNewlines(firstBlockText));
    Document.Page.Block lastBlock = blocks.get(blocks.size() - 1);
    String lastBlockText = getLayoutText(lastBlock.getLayout().getTextAnchor(), text);
    System.out.printf("        Last block text: %s\n", escapeNewlines(lastBlockText));
  }

  private static void printLines(List<Document.Page.Line> lines, String text) {
    System.out.printf("    %d lines detected:\n", lines.size());
    Document.Page.Line firstLine = lines.get(0);
    String firstLineText = getLayoutText(firstLine.getLayout().getTextAnchor(), text);
    System.out.printf("        First line text: %s\n", escapeNewlines(firstLineText));
    Document.Page.Line lastLine = lines.get(lines.size() - 1);
    String lastLineText = getLayoutText(lastLine.getLayout().getTextAnchor(), text);
    System.out.printf("        Last line text: %s\n", escapeNewlines(lastLineText));
  }

  private static void printTokens(List<Document.Page.Token> tokens, String text) {
    System.out.printf("    %d tokens detected:\n", tokens.size());
    Document.Page.Token firstToken = tokens.get(0);
    String firstTokenText = getLayoutText(firstToken.getLayout().getTextAnchor(), text);
    System.out.printf("        First token text: %s\n", escapeNewlines(firstTokenText));
    Document.Page.Token lastToken = tokens.get(tokens.size() - 1);
    String lastTokenText = getLayoutText(lastToken.getLayout().getTextAnchor(), text);
    System.out.printf("        Last token text: %s\n", escapeNewlines(lastTokenText));
  }

  // Extract shards from the text field
  private static String getLayoutText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }

  private static String escapeNewlines(String s) {
    return s.replace("\n", "\\n").replace("\r", "\\r");
  }
}

Node.js

Para mais informações, consulte a documentação de referência da API Document AI Node.js.

Para autenticar na Document AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1beta3;

// Instantiates a client
const client = new DocumentProcessorServiceClient();

async function processDocument() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);

  console.log('Document processing complete.');

  // Read the text recognition output from the processor
  // For a full list of Document object attributes,
  // please reference this page: https://googleapis.dev/nodejs/documentai/latest/index.html
  const {document} = result;
  const {text} = document;

  // Read the text recognition output from the processor
  console.log(`Full document text: ${JSON.stringify(text)}`);
  console.log(`There are ${document.pages.length} page(s) in this document.`);
  for (const page of document.pages) {
    console.log(`Page ${page.pageNumber}`);
    printPageDimensions(page.dimension);
    printDetectedLanguages(page.detectedLanguages);
    printParagraphs(page.paragraphs, text);
    printBlocks(page.blocks, text);
    printLines(page.lines, text);
    printTokens(page.tokens, text);
  }
}

const printPageDimensions = dimension => {
  console.log(`    Width: ${dimension.width}`);
  console.log(`    Height: ${dimension.height}`);
};

const printDetectedLanguages = detectedLanguages => {
  console.log('    Detected languages:');
  for (const lang of detectedLanguages) {
    const code = lang.languageCode;
    const confPercent = lang.confidence * 100;
    console.log(`        ${code} (${confPercent.toFixed(2)}% confidence)`);
  }
};

const printParagraphs = (paragraphs, text) => {
  console.log(`    ${paragraphs.length} paragraphs detected:`);
  const firstParagraphText = getText(paragraphs[0].layout.textAnchor, text);
  console.log(
    `        First paragraph text: ${JSON.stringify(firstParagraphText)}`
  );
  const lastParagraphText = getText(
    paragraphs[paragraphs.length - 1].layout.textAnchor,
    text
  );
  console.log(
    `        Last paragraph text: ${JSON.stringify(lastParagraphText)}`
  );
};

const printBlocks = (blocks, text) => {
  console.log(`    ${blocks.length} blocks detected:`);
  const firstBlockText = getText(blocks[0].layout.textAnchor, text);
  console.log(`        First block text: ${JSON.stringify(firstBlockText)}`);
  const lastBlockText = getText(
    blocks[blocks.length - 1].layout.textAnchor,
    text
  );
  console.log(`        Last block text: ${JSON.stringify(lastBlockText)}`);
};

const printLines = (lines, text) => {
  console.log(`    ${lines.length} lines detected:`);
  const firstLineText = getText(lines[0].layout.textAnchor, text);
  console.log(`        First line text: ${JSON.stringify(firstLineText)}`);
  const lastLineText = getText(
    lines[lines.length - 1].layout.textAnchor,
    text
  );
  console.log(`        Last line text: ${JSON.stringify(lastLineText)}`);
};

const printTokens = (tokens, text) => {
  console.log(`    ${tokens.length} tokens detected:`);
  const firstTokenText = getText(tokens[0].layout.textAnchor, text);
  console.log(`        First token text: ${JSON.stringify(firstTokenText)}`);
  const firstTokenBreakType = tokens[0].detectedBreak.type;
  console.log(`        First token break type: ${firstTokenBreakType}`);
  const lastTokenText = getText(
    tokens[tokens.length - 1].layout.textAnchor,
    text
  );
  console.log(`        Last token text: ${JSON.stringify(lastTokenText)}`);
  const lastTokenBreakType = tokens[tokens.length - 1].detectedBreak.type;
  console.log(`        Last token break type: ${lastTokenBreakType}`);
};

// Extract shards from the text field
const getText = (textAnchor, text) => {
  if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
    return '';
  }

  // First shard in document doesn't have startIndex property
  const startIndex = textAnchor.textSegments[0].startIndex || 0;
  const endIndex = textAnchor.textSegments[0].endIndex;

  return text.substring(startIndex, endIndex);
};

Python

Para mais informações, consulte a documentação de referência da API Document AI Python.

Para autenticar na Document AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


from typing import Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.cloud import documentai

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# processor_version = "rc" # Refer to https://cloud.google.com/document-ai/docs/manage-processor-versions for more information
# file_path = "/path/to/local/pdf"
# mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types


def process_document_ocr_sample(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
) -> None:
    # Optional: Additional configurations for Document OCR Processor.
    # For more information: https://cloud.google.com/document-ai/docs/enterprise-document-ocr
    process_options = documentai.ProcessOptions(
        ocr_config=documentai.OcrConfig(
            enable_native_pdf_parsing=True,
            enable_image_quality_scores=True,
            enable_symbol=True,
            # OCR Add Ons https://cloud.google.com/document-ai/docs/ocr-add-ons
            premium_features=documentai.OcrConfig.PremiumFeatures(
                compute_style_info=True,
                enable_math_ocr=False,  # Enable to use Math OCR Model
                enable_selection_mark_detection=True,
            ),
        )
    )
    # Online processing request to Document AI
    document = process_document(
        project_id,
        location,
        processor_id,
        processor_version,
        file_path,
        mime_type,
        process_options=process_options,
    )

    text = document.text
    print(f"Full document text: {text}\n")
    print(f"There are {len(document.pages)} page(s) in this document.\n")

    for page in document.pages:
        print(f"Page {page.page_number}:")
        print_page_dimensions(page.dimension)
        print_detected_languages(page.detected_languages)

        print_blocks(page.blocks, text)
        print_paragraphs(page.paragraphs, text)
        print_lines(page.lines, text)
        print_tokens(page.tokens, text)

        if page.symbols:
            print_symbols(page.symbols, text)

        if page.image_quality_scores:
            print_image_quality_scores(page.image_quality_scores)

        if page.visual_elements:
            print_visual_elements(page.visual_elements, text)


def print_page_dimensions(dimension: documentai.Document.Page.Dimension) -> None:
    print(f"    Width: {str(dimension.width)}")
    print(f"    Height: {str(dimension.height)}")


def print_detected_languages(
    detected_languages: Sequence[documentai.Document.Page.DetectedLanguage],
) -> None:
    print("    Detected languages:")
    for lang in detected_languages:
        print(f"        {lang.language_code} ({lang.confidence:.1%} confidence)")


def print_blocks(blocks: Sequence[documentai.Document.Page.Block], text: str) -> None:
    print(f"    {len(blocks)} blocks detected:")
    first_block_text = layout_to_text(blocks[0].layout, text)
    print(f"        First text block: {repr(first_block_text)}")
    last_block_text = layout_to_text(blocks[-1].layout, text)
    print(f"        Last text block: {repr(last_block_text)}")


def print_paragraphs(
    paragraphs: Sequence[documentai.Document.Page.Paragraph], text: str
) -> None:
    print(f"    {len(paragraphs)} paragraphs detected:")
    first_paragraph_text = layout_to_text(paragraphs[0].layout, text)
    print(f"        First paragraph text: {repr(first_paragraph_text)}")
    last_paragraph_text = layout_to_text(paragraphs[-1].layout, text)
    print(f"        Last paragraph text: {repr(last_paragraph_text)}")


def print_lines(lines: Sequence[documentai.Document.Page.Line], text: str) -> None:
    print(f"    {len(lines)} lines detected:")
    first_line_text = layout_to_text(lines[0].layout, text)
    print(f"        First line text: {repr(first_line_text)}")
    last_line_text = layout_to_text(lines[-1].layout, text)
    print(f"        Last line text: {repr(last_line_text)}")


def print_tokens(tokens: Sequence[documentai.Document.Page.Token], text: str) -> None:
    print(f"    {len(tokens)} tokens detected:")
    first_token_text = layout_to_text(tokens[0].layout, text)
    first_token_break_type = tokens[0].detected_break.type_.name
    print(f"        First token text: {repr(first_token_text)}")
    print(f"        First token break type: {repr(first_token_break_type)}")
    if tokens[0].style_info:
        print_style_info(tokens[0].style_info)

    last_token_text = layout_to_text(tokens[-1].layout, text)
    last_token_break_type = tokens[-1].detected_break.type_.name
    print(f"        Last token text: {repr(last_token_text)}")
    print(f"        Last token break type: {repr(last_token_break_type)}")
    if tokens[-1].style_info:
        print_style_info(tokens[-1].style_info)


def print_symbols(
    symbols: Sequence[documentai.Document.Page.Symbol], text: str
) -> None:
    print(f"    {len(symbols)} symbols detected:")
    first_symbol_text = layout_to_text(symbols[0].layout, text)
    print(f"        First symbol text: {repr(first_symbol_text)}")
    last_symbol_text = layout_to_text(symbols[-1].layout, text)
    print(f"        Last symbol text: {repr(last_symbol_text)}")


def print_image_quality_scores(
    image_quality_scores: documentai.Document.Page.ImageQualityScores,
) -> None:
    print(f"    Quality score: {image_quality_scores.quality_score:.1%}")
    print("    Detected defects:")

    for detected_defect in image_quality_scores.detected_defects:
        print(f"        {detected_defect.type_}: {detected_defect.confidence:.1%}")


def print_style_info(style_info: documentai.Document.Page.Token.StyleInfo) -> None:
    """
    Only supported in version `pretrained-ocr-v2.0-2023-06-02`
    """
    print(f"           Font Size: {style_info.font_size}pt")
    print(f"           Font Type: {style_info.font_type}")
    print(f"           Bold: {style_info.bold}")
    print(f"           Italic: {style_info.italic}")
    print(f"           Underlined: {style_info.underlined}")
    print(f"           Handwritten: {style_info.handwritten}")
    print(
        f"           Text Color (RGBa): {style_info.text_color.red}, {style_info.text_color.green}, {style_info.text_color.blue}, {style_info.text_color.alpha}"
    )


def print_visual_elements(
    visual_elements: Sequence[documentai.Document.Page.VisualElement], text: str
) -> None:
    """
    Only supported in version `pretrained-ocr-v2.0-2023-06-02`
    """
    checkboxes = [x for x in visual_elements if "checkbox" in x.type]
    math_symbols = [x for x in visual_elements if x.type == "math_formula"]

    if checkboxes:
        print(f"    {len(checkboxes)} checkboxes detected:")
        print(f"        First checkbox: {repr(checkboxes[0].type)}")
        print(f"        Last checkbox: {repr(checkboxes[-1].type)}")

    if math_symbols:
        print(f"    {len(math_symbols)} math symbols detected:")
        first_math_symbol_text = layout_to_text(math_symbols[0].layout, text)
        print(f"        First math symbol: {repr(first_math_symbol_text)}")




def process_document(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
    process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
    # You must set the `api_endpoint` if you use a location other than "us".
    client = documentai.DocumentProcessorServiceClient(
        client_options=ClientOptions(
            api_endpoint=f"{location}-documentai.googleapis.com"
        )
    )

    # The full resource name of the processor version, e.g.:
    # `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
    # You must create a processor before running this sample.
    name = client.processor_version_path(
        project_id, location, processor_id, processor_version
    )

    # Read the file into memory
    with open(file_path, "rb") as image:
        image_content = image.read()

    # Configure the process request
    request = documentai.ProcessRequest(
        name=name,
        raw_document=documentai.RawDocument(content=image_content, mime_type=mime_type),
        # Only supported for Document OCR processor
        process_options=process_options,
    )

    result = client.process_document(request=request)

    # For a full list of `Document` object attributes, reference this page:
    # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
    return result.document




def layout_to_text(layout: documentai.Document.Page.Layout, text: str) -> str:
    """
    Document AI identifies text in different parts of the document by their
    offsets in the entirety of the document"s text. This function converts
    offsets to a string.
    """
    # If a text segment spans several lines, it will
    # be stored in different text segments.
    return "".join(
        text[int(segment.start_index) : int(segment.end_index)]
        for segment in layout.text_anchor.text_segments
    )

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud , consulte a pesquisa de exemplos de código do Google Cloud .