Creating a custom regex detector

A regular expression (regex) custom infoType detector allows you to create your own detectors that enable Cloud DLP to detect matches based on a regex pattern. For example, suppose that you had medical record numbers in the form ###-#-#####. You could define a regex pattern such as the following:

[0-9]{3}-[0-9]{1}-[0-9]{5}

Cloud DLP would then match items like the following:

012-4-56789

Anatomy of a regex custom infoType detector

As summarized in API Overview, to create a custom regex infoType detector, you define a CustomInfoType object that contains:

  • The name you want to give the custom infoType detector, within in an InfoType object.
  • An optional Likelihood value. If you omit this, regex matches will return a default likelihood of VERY_LIKELY. If you notice a regex custom infoType detector returning too many false positives, try reducing the base likelihood and using detection rules to boost the likelihood using contextual information. To learn more, see Customizing finding likelihood.
  • Optional DetectionRules, or hotword rules. These rules adjust the likelihood of findings within a given proximity of specified hotwords. Learn more about hotword rules in Customizing finding likelihood.
  • A Regex object consisting of a single pattern defining the regular expression.

As a JSON object, a regex custom infoType detector that includes all optional components looks like this:

{
  "customInfoTypes":[
    {
      "infoType":{
        "name":"[CUSTOM_INFOTYPE_NAME]"
      },
      "likelihood":"[LIKELIHOOD_VALUE]",
      "detectionRules":[
        {
          "hotwordRule":{
            [HOTWORDRULE_OBJECT]
          }
        },
        ...
      ],
      "regex":{
        "pattern":"[REGEX_PATTERN]"
      }
    }
  ],
  ...
}

Regex example: Match medical record numbers

The following JSON snippet and code in several languages below show a regular expression custom infoType detector that instructs Cloud DLP to match a medical record number (MRN) in the input text "Patient's MRN 444-5-22222," and assign each match a likelihood of POSSIBLE.

Protocol

See the JSON quickstart for more information about using the Cloud DLP API with JSON.

JSON Input:

POST https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/content:inspect?key={YOUR_API_KEY}

{
  "item":{
    "value":"Patients MRN 444-5-22222"
  },
  "inspectConfig":{
    "customInfoTypes":[
      {
        "infoType":{
          "name":"C_MRN"
        },
        "regex":{
          "pattern":"[1-9]{3}-[1-9]{1}-[1-9]{5}"
        },
        "likelihood":"POSSIBLE"
      }
    ]
  }
}

JSON Output:

{
  "result":{
    "findings":[
      {
        "infoType":{
          "name":"C_MRN"
        },
        "likelihood":"POSSIBLE",
        "location":{
          "byteRange":{
            "start":"13",
            "end":"24"
          },
          "codepointRange":{
            "start":"13",
            "end":"24"
          }
        },
        "createTime":"2018-11-30T01:29:37.799Z"
      }
    ]
  }
}

The output shows that, using the custom infoType detector we gave the name C_MRN and its custom regex, Cloud DLP has correctly identified the medical record number and assigned it a certainty of POSSIBLE, as we specified.

Customizing match likelihood builds on this example to include context words.

Java


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.ByteContentItem;
import com.google.privacy.dlp.v2.ByteContentItem.BytesType;
import com.google.privacy.dlp.v2.ContentItem;
import com.google.privacy.dlp.v2.CustomInfoType;
import com.google.privacy.dlp.v2.CustomInfoType.Regex;
import com.google.privacy.dlp.v2.Finding;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectContentRequest;
import com.google.privacy.dlp.v2.InspectContentResponse;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.protobuf.ByteString;
import java.io.IOException;

public class InspectWithCustomRegex {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String textToInspect = "Patients MRN 444-5-22222";
    String customRegexPattern = "[1-9]{3}-[1-9]{1}-[1-9]{5}";
    inspectWithCustomRegex(projectId, textToInspect, customRegexPattern);
  }

  // Inspects a BigQuery Table
  public static void inspectWithCustomRegex(
      String projectId, String textToInspect, String customRegexPattern) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the type and content to be inspected.
      ByteContentItem byteItem =
          ByteContentItem.newBuilder()
              .setType(BytesType.TEXT_UTF8)
              .setData(ByteString.copyFromUtf8(textToInspect))
              .build();
      ContentItem item = ContentItem.newBuilder().setByteItem(byteItem).build();

      // Specify the regex pattern the inspection will look for.
      Regex regex = Regex.newBuilder().setPattern(customRegexPattern).build();

      // Construct the custom regex detector.
      InfoType infoType = InfoType.newBuilder().setName("C_MRN").build();
      CustomInfoType customInfoType =
          CustomInfoType.newBuilder().setInfoType(infoType).setRegex(regex).build();

      // Construct the configuration for the Inspect request.
      InspectConfig config =
          InspectConfig.newBuilder()
              .addCustomInfoTypes(customInfoType)
              .setIncludeQuote(true)
              .setMinLikelihood(Likelihood.POSSIBLE)
              .build();

      // Construct the Inspect request to be sent by the client.
      InspectContentRequest request =
          InspectContentRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setItem(item)
              .setInspectConfig(config)
              .build();

      // Use the client to send the API request.
      InspectContentResponse response = dlp.inspectContent(request);

      // Parse the response and process results
      System.out.println("Findings: " + response.getResult().getFindingsCount());
      for (Finding f : response.getResult().getFindingsList()) {
        System.out.println("\tQuote: " + f.getQuote());
        System.out.println("\tInfo type: " + f.getInfoType().getName());
        System.out.println("\tLikelihood: " + f.getLikelihood());
      }
    }
  }
}

Python

def inspect_with_medical_record_number_custom_regex_detector(
    project, content_string,
):
    """Uses the Data Loss Prevention API to analyze string with medical record
       number custom regex detector
    Args:
        project: The Google Cloud project id to use as a parent resource.
        content_string: The string to inspect.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Import the client library.
    import google.cloud.dlp

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Construct a custom regex detector info type called "C_MRN",
    # with ###-#-##### pattern, where each # represents a digit from 1 to 9.
    # The detector has a detection likelihood of POSSIBLE.
    custom_info_types = [
        {
            "info_type": {"name": "C_MRN"},
            "regex": {"pattern": "[1-9]{3}-[1-9]{1}-[1-9]{5}"},
            "likelihood": google.cloud.dlp_v2.Likelihood.POSSIBLE,
        }
    ]

    # Construct the configuration dictionary with the custom regex info type.
    inspect_config = {
        "custom_info_types": custom_info_types,
    }

    # Construct the `item`.
    item = {"value": content_string}

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.inspect_content(
        request={"parent": parent, "inspect_config": inspect_config, "item": item}
    )

    # Print out the results.
    if response.result.findings:
        for finding in response.result.findings:
            try:
                if finding.quote:
                    print(f"Quote: {finding.quote}")
            except AttributeError:
                pass
            print(f"Info type: {finding.info_type.name}")
            print(f"Likelihood: {finding.likelihood}")
    else:
        print("No findings.")