Erste Schritte mit einem lokalen Deep Learning-Container
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Auf dieser Seite wird beschrieben, wie Sie einen lokalen Deep-Learning-Container erstellen und einrichten.
In dieser Anleitung wird davon ausgegangen, dass Sie mit Docker vertraut sind.
Hinweise
Führen Sie die folgenden Schritte aus, um ein Google Cloud -Konto einzurichten, die erforderlichen APIs zu aktivieren und die benötigte Software zu installieren und zu aktivieren.
Rufen Sie in der Google Cloud Console die Seite Ressourcen verwalten auf und wählen Sie ein Projekt aus oder erstellen Sie ein Projekt.
Wenn Sie ein Linux-basiertes Betriebssystem wie Ubuntu oder Debian nutzen, fügen Sie der Gruppe docker Ihren Nutzernamen hinzu, damit Sie Docker ohne sudo ausführen können:
sudousermod-a-Gdocker${USER}
Möglicherweise müssen Sie Ihr System neu starten, wenn Sie sich zur Gruppe docker hinzugefügt haben.
Öffnen Sie Docker. Prüfen Sie mit dem folgenden Docker-Befehl, durch den die aktuelle Zeit und das aktuelle Datum zurückgegeben werden, ob Docker ausgeführt wird:
docker run busybox date
Verwenden Sie gcloud als Credential Helper für Docker:
gcloud auth configure-docker
Optional: Wenn Sie den Container mit GPU lokal ausführen möchten, installieren Sie nvidia-docker.
Container erstellen
So erstellen Sie einen Container:
So rufen Sie eine Liste der verfügbaren Container auf:
gcloud container images list \
--repository="gcr.io/deeplearning-platform-release"
Wenn Sie keinen GPU-fähigen Container verwenden müssen, geben Sie das folgende Codebeispiel ein. Ersetzen Sie tf-cpu.1-13 durch den Namen des Containers, den Sie verwenden möchten.
docker run -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \
gcr.io/deeplearning-platform-release/tf-cpu.1-13
Wenn Sie einen GPU-fähigen Container verwenden möchten, geben Sie das folgende Codebeispiel ein. Ersetzen Sie tf-gpu.1-13 durch den Namen des Containers, den Sie verwenden möchten.
docker run --runtime=nvidia -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \
gcr.io/deeplearning-platform-release/tf-gpu.1-13
Dieser Befehl startet den Container im getrennten Modus, stellt das lokale Verzeichnis /path/to/local/dir zu /home/jupyter im Container bereit und ordnet Port 8080 im Container Port 8080 auf Ihrem lokalen Computer zu. Der Container ist vorkonfiguriert, um einen JupyterLab-Server zu starten. Diesen können Sie unter http://localhost:8080 aufrufen.
Nächste Schritte
Weitere Informationen zur Arbeit mit Containern finden Sie in der Docker-Dokumentation.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[[["\u003cp\u003eThis guide details the process of creating and setting up a local deep learning container, requiring basic Docker knowledge.\u003c/p\u003e\n"],["\u003cp\u003eThe setup involves creating or selecting a Google Cloud project, installing and initializing the gcloud CLI, and installing Docker, with specific instructions for Linux users to avoid using \u003ccode\u003esudo\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eUsers can choose from available deep learning containers using a command to list them or visit the "Choosing a container" page, then using a command to either use a cpu container, or a gpu-enabled container.\u003c/p\u003e\n"],["\u003cp\u003eThe container is launched in detached mode, mounting a local directory to the container and mapping a port, which then allows the user to use a preconfigured JupyterLab server.\u003c/p\u003e\n"],["\u003cp\u003eOptionally, for those requiring GPU acceleration, the guide suggests installing \u003ccode\u003envidia-docker\u003c/code\u003e, and using the appropriate container creation command.\u003c/p\u003e\n"]]],[],null,["# Get started with a local deep learning container\n\nThis page describes how to create and set up a local deep learning container.\nThis guide expects you to have basic familiarity\nwith [Docker](https://www.docker.com/).\n\nBefore you begin\n----------------\n\nComplete the following steps to set up a Google Cloud account, enable\nthe required APIs, and install and activate the required software.\n\n1. In the Google Cloud Console, go to the **Manage resources** page\n and select or create a project.\n\n | **Note:** If you don't plan to keep the resources you create in this tutorial, create a new project instead of selecting an existing project. After you finish, you can delete the project, removing all resources associated with the project and tutorial.\n\n [Go to Manage\n resources](https://console.cloud.google.com/cloud-resource-manager)\n2. [Install and initialize the\n gcloud CLI](/sdk/docs).\n\n3. [Install Docker](https://docs.docker.com/install/).\n\n If you're using a Linux-based operating system, such as Ubuntu or Debian,\n add your username to the `docker` group so that you can run Docker\n without using `sudo`: \n\n sudo usermod -a -G docker ${USER}\n\n | **Caution:** The `docker` group is equivalent to the `root` user. See [Docker's documentation](https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface) for details on how this affects the security of your system.\n\n You may need to restart your system after adding yourself to\n the `docker` group.\n4. Open Docker. To ensure that Docker is running, run the following\n Docker command, which returns the current time and date:\n\n docker run busybox date\n\n5. Use `gcloud` as the credential helper for Docker:\n\n gcloud auth configure-docker\n\n6. **Optional** : If you want to run the container using GPU locally,\n install\n [`nvidia-docker`](https://github.com/NVIDIA/nvidia-docker#quickstart).\n\nCreate your container\n---------------------\n\nFollow these steps to create your container.\n\n1. To view a list of containers available:\n\n gcloud container images list \\\n --repository=\"gcr.io/deeplearning-platform-release\"\n\n You may want to go to [Choosing a container](/deep-learning-containers/docs/choosing-container)\n to help you select the container that you want.\n2. If you don't need to use a GPU-enabled container, enter the following code\n example. Replace \u003cvar translate=\"no\"\u003etf-cpu.1-13\u003c/var\u003e with the name of the container\n that you want to use.\n\n docker run -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \\\n gcr.io/deeplearning-platform-release/\u003cvar translate=\"no\"\u003etf-cpu.1-13\u003c/var\u003e\n\n If you want to use a GPU-enabled container, enter the following code\n example. Replace \u003cvar translate=\"no\"\u003etf-gpu.1-13\u003c/var\u003e with the name of the container\n that you want to use. \n\n docker run --runtime=nvidia -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \\\n gcr.io/deeplearning-platform-release/\u003cvar translate=\"no\"\u003etf-gpu.1-13\u003c/var\u003e\n\nThis command starts up the container in detached mode, mounts the local\ndirectory `/path/to/local/dir` to `/home/jupyter` in the container, and maps\nport 8080 on the container to port 8080 on your local machine. The\ncontainer is preconfigured to start a JupyterLab server, which you can\nvisit at `http://localhost:8080`.\n\nWhat's next\n-----------\n\n- Learn more about how to work with containers in the [Docker\n documentation](https://docs.docker.com)."]]