Dataplex provides templates, powered by Dataflow, to perform common data processing tasks like data ingestion, processing, and managing the data lifecycle. This guide describes how to configure and run data processing templates.
Before you begin
Dataplex templates are powered by Dataflow. Before you use templates, enable the Dataflow APIs.
Notes
All templates support common Dataflow pipeline options.
Dataplex uses data pipelines to schedule the tasks defined by the templates.
You can only see tasks that you schedule through Dataplex on the Google Cloud console Dataplex page.
Template: Convert raw data to curated data
The Dataplex file format conversion template converts data in a Dataplex Cloud Storage asset, or a list of Dataplex entities stored in CSV or JSON formats, to Parquet or Avro format-data in another Dataplex asset. The partition layout is preserved in the conversion. It also supports compression of the output files.
Template parameters
Parameter | Description |
---|---|
inputAssetOrEntitiesList |
The Dataplex asset or Dataplex entities that
contain the input files. This parameter should follow the format:
projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/assets/<asset-name>
or projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/entities/<entity1-name>,projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/entities/<entity 2 name>... |
outputFileFormat |
The output file format in Cloud Storage. This parameter should
follow the format: PARQUET or AVRO . |
outputAsset |
The name of the Dataplex asset that contains the
Cloud Storage bucket where output files will be stored. This
parameter should follow the format: projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/assets/<asset-name> . You can find the
outputAsset in the Google Cloud console, in the
Dataplex asset Details tab. |
outputFileCompression |
Optional: The output file compression. The default value for this
parameter is SNAPPY . Other values for the parameter can be
UNCOMPRESSED , SNAPPY , GZIP , or
BZIP2 . BZIP2 is not supported for
PARQUET files. |
writeDisposition |
Optional: Specifies the action that occurs if a destination file
already exists. The default value for this parameter is SKIP ,
which signals to process only those files that don't exist in the
destination directory. Other values for the parameter can be
OVERWRITE (overwrite any existing files) or FAIL
(don't process anything and produce an error if at least one destination
file already exists). |
updateDataplexMetadata |
Optional: Whether to update Dataplex metadata for the
newly created entities. The default value for this parameter is
If enabled, the pipeline will automatically copy the schema from source to the destination Dataplex entities, and the automated Dataplex Discovery won't run for them. Use this flag if the schema of the source (raw) data is managed by Dataplex. |
Run the template
Console
In the Google Cloud console, go to the Dataplex page:
Navigate to the Process view.
Click Create task.
Under Convert to Curated Formats, click Create task.
Choose a Dataplex lake.
Provide a task name.
Choose a region for task execution.
Fill in the required parameters.
Click Continue.
gcloud
Replace the following:
JOB_NAME: a job name of your choice PROJECT_ID: your template project ID REGION_NAME: region in which to run the job INPUT_ASSET_OR_ENTITIES_LIST: path to your JDBC drivers OUTPUT_FILE_FORMAT: your output file format in Cloud Storage OUTPUT_ASSET: your Dataplex output asset ID
In your shell or terminal, run the template:
gcloud beta dataflow flex-template run JOB_NAME \ --project=PROJECT_ID \ --region=REGION_NAME \ --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/latest/flex/Dataplex_File_Format_Conversion_Preview \ --parameters \ inputAssetOrEntitiesList=INPUT_ASSET_OR_ENTITIES_LIST,\ outputFileFormat=OUTPUT_FILE_FORMAT,\ outputAsset=OUTPUT_ASSET
REST API
Replace the following:
PROJECT_ID: your template project ID REGION_NAME: region in which to run the job JOB_NAME: a job name of your choice INPUT_ASSET_OR_ENTITIES_LIST: path to your JDBC drivers OUTPUT_FILE_FORMAT: your output file format in Cloud Storage OUTPUT_ASSET: your Dataplex output asset ID
Submit an HTTP POST request:
POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/REGION_NAME/flexTemplates:launch { "launch_parameter": { "jobName": "JOB_NAME", "parameters": { "inputAssetOrEntitiesList": "INPUT_ASSET_OR_ENTITIES_LIST", "outputFileFormat": "OUTPUT_FILE_FORMAT", "outputAsset": "OUTPUT_ASSET", }, "containerSpecGcsPath": "gs://dataflow-templates-REGION_NAME/latest/flex/Dataplex_File_Format_Conversion_Preview", } }
Template: Tier data from a BigQuery asset to a Cloud Storage asset
The Dataplex BigQuery to Cloud Storage template copies data from a Dataplex BigQuery asset to a Dataplex Cloud Storage asset in a Dataplex-compatible layout and format. You can specify a BigQuery dataset or a list of BigQuery tables to be copied. For additional flexibility, the template allows for copying data older than a specified modification date and allows for optionally deleting data from BigQuery after a successful copy.
When copying partitioned tables from BigQuery to Cloud Storage:
- The template creates Hive-style partitions on the Cloud Storage bucket.
BigQuery cannot have the Hive-style partition key
be the same as an existing column. You can use the option
enforceSamePartitionKey
to either create a new partition key or keep the same partition key but rename the existing column. - Dataplex Discovery registers the partition type
as
string
when creating a BigQuery table (and a table in Dataproc Metastore). This may affect your existing partition filters.
There is a limit on the number of tables and partitions that can be transformed in a single template run, which is approximately 300. The exact number depends on the length of the table names and other factors.
Template parameters
Parameter | Description |
---|---|
sourceBigQueryDataset |
The BigQuery dataset to tier data from. This parameter
should contain either a Dataplex asset name in the format
projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/assets/<asset-name>
or a BigQuery dataset ID in the format
projects/<name>/datasets/<dataset-id> . |
destinationStorageBucketAssetName |
The Dataplex asset name for the Cloud Storage bucket
to tier data to. This parameter should follow the format
projects/<name>/locations/<loc>/lakes/<lake-name>/zones/<zone-name>/assets/<asset-name> . |
tables |
Optional: A comma-separated list of BigQuery tables to tier. If no list is provided, all tables will be tiered. Tables should be specified by their name only (no project/dataset prefix) and are case-sensitive. |
exportDataModifiedBeforeDateTime |
Optional: Use this parameter to move data older than this date (and
optional time). For partitioned BigQuery tables, move
partitions last modified before this date/time. For non-partitioned
tables, move if the table was last modified before this date/time. If not
specified, move all tables/partitions. The date/time is parsed in the
default time zone by default, but optional suffixes Z and
+HH:mm are supported. This parameter should follow the format
YYYY-MM-DD or YYYY-MM-DDTHH:mm:ss or
YYYY-MM-DDTHH:mm:ss+03:00 .
Relative date/time
is also supported, and should follow the format
-PnDTnHnMn.nS (must start with -P , which
indicates time in the past).
|
fileFormat |
Optional: The output file format in Cloud Storage. The default
value for this parameter is PARQUET . Another value for the
parameter can be AVRO . |
fileCompression |
Optional: The output file compression. The default value for this
parameter is SNAPPY . Other values for the parameter can be
UNCOMPRESSED , SNAPPY , GZIP , or
BZIP2 . BZIP2 is not supported for
PARQUET files. |
deleteSourceData |
Optional: Whether to delete source data from BigQuery
after a successful export. Values can be either true or
false . The default value for this parameter is
false . |
partitionIdRegExp |
Optional: Process partitions with partition ID matching this regular expression only. If no value is provided, this parameter defaults to process all. |
writeDisposition |
Optional: Specifies the action that occurs if a destination file
already exists, meaning one or more tables/partitions have already been
pre-tiered. The default value for this parameter is SKIP ,
which signals to process only those tables/partitions that were not
already pre-tiered. Other values for the parameter can be
OVERWRITE (overwrite any existing files) or FAIL
(don't process anything and produce an error if at least one destination
file already exists). |
enforceSamePartitionKey |
Optional: Whether to enforce the same partition key. Due to a BigQuery limitation, it's not possible for the partition key (in the file path) in a partitioned external table to have the same name as one of the columns in the file. If this parameter is true (which is the default value), the partition key of the target file is set to the original partition column name and the column in the file is renamed. If false, the partition key is renamed. For example, if the original table is partitioned on a column named
If |
updateDataplexMetadata |
Optional: Whether to update Dataplex metadata for the
newly created entities. The default value for this parameter is
If enabled, the pipeline will automatically copy the schema from source to the destination Dataplex entities, and the automated Dataplex Discovery won't run for them. Use this flag if you are managing the schema of the source BigQuery tables. |
Run the template
Console
In the Google Cloud console, go to the Dataplex page:
Navigate to the Process view.
Click Create Task.
Under Tier from BQ to GCS Assets, click Create task.
Choose a Dataplex lake.
Provide a task name.
Choose a region for task execution.
Fill in the required parameters.
Click Continue.
gcloud
Replace the following:
JOB_NAME: a job name of your choice PROJECT_ID: your template project ID REGION_NAME: region in which to run the job SOURCE_ASSET_NAME_OR_DATASET_ID: your Dataplex asset name for the source BigQuery dataset, or the dataset ID DESTINATION_ASSET_NAME: your Dataplex asset name for the destination Cloud Storage bucket
In your shell or terminal, run the template:
gcloud beta dataflow flex-template run JOB_NAME \ --project=PROJECT_ID \ --region=REGION_NAME \ --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/latest/flex/Dataplex_BigQuery_to_GCS_Preview \ --parameters \ sourceBigQueryDataset=SOURCE_ASSET_NAME_OR_DATASET_ID,\ destinationStorageBucketAssetName=DESTINATION_ASSET_NAME
REST API
Replace the following:
PROJECT_ID: your template project ID REGION_NAME: region in which to run the job JOB_NAME: a job name of your choice SOURCE_ASSET_NAME_OR_DATASET_ID: your Dataplex asset name for the source BigQuery dataset, or the dataset ID DESTINATION_ASSET_NAME: your Dataplex asset name for the destination Cloud Storage bucket REGION_NAME: region in which to run the job
Submit an HTTP POST request:
POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/REGION_NAME/flexTemplates:launch { "launch_parameter": { "jobName": "JOB_NAME", "parameters": { "sourceBigQueryDataset": "SOURCE_ASSET_NAME_OR_DATASET_ID", "destinationStorageBucketAssetName": "DESTINATION_ASSET_NAME", }, "containerSpecGcsPath": "gs://dataflow-templates-REGION_NAME/latest/flex/Dataplex_BigQuery_to_GCS_Preview", } }
Schedule other Google Cloud-provided or custom Dataflow templates
Dataplex allows you to schedule and monitor any of the Google Cloud-provided Dataflow templates or your custom Dataflow template in the console.
Schedule
Console
In the Google Cloud console, go to the Dataplex page:
Navigate to the Process view.
Click Create Task.
Under Author a Dataflow pipeline, click Create Dataflow pipeline.
Choose a Dataplex lake.
Provide a task name.
Choose a region for where to run the task.
Choose a Dataflow template.
Fill in the required parameters.
Click Continue.
Monitor
Console
In the Google Cloud console, go to the Dataplex page:
Navigate to the Process view.
Click Dataflow pipelines.
Filter by lake or pipeline name.