透過集合功能整理內容
你可以依據偏好儲存及分類內容。
本頁面說明如何設定 Cortex Framework Data Foundation 部署作業的外部資料集 (選用步驟)。某些進階用途可能需要外部資料集,才能補足企業記錄系統。除了從 BigQuery sharing (舊稱 Analytics Hub) 取得的外部交換資料外,部分資料集可能需要自訂或量身打造的方法,才能擷取資料並與報表模型合併。
如要啟用下列外部資料集,請將 k9.deployDataset
設為 True
,
以便部署資料集。
請按照下列步驟,為支援的外部資料集設定有向非循環圖 (DAG):
節慶日曆:這個 DAG 會從 PyPi Holidays 擷取特殊日期。
- 調整國家/地區清單、年份清單和其他 DAG 參數,即可在
holiday_calendar.ini
中擷取節慶日期。
趨勢:這個 DAG 會從 Google 搜尋趨勢,擷取特定字詞組合的搜尋熱度。您可以在 trends.ini
中設定這些條件。
- 首次執行後,請在
trends.ini
中將 start_date
調整為 'today 7-d'
。
- 熟悉不同字詞的結果,以便調整參數。
- 建議您將大型清單分割成多個副本,並在不同時間執行這些 DAG。
- 如要進一步瞭解使用的基礎程式庫,請參閱 Pytrends。
天氣:根據預設,這個 DAG 會使用公開的測試資料集 BigQuery-public-data.geo_openstreetmap.planet_layers
。這項查詢也依據 NOAA 資料集,但該資料集只能透過共用功能存取:noaa_global_forecast_system
。
執行部署作業前,請務必在與其他資料集相同的區域中建立這個資料集。如果資料集在您所在區域無法使用,請按照下列指示將資料轉移至所選區域:
- 前往「Sharing (Analytics Hub)」頁面。
- 按一下「搜尋商家資訊」。
- 搜尋「NOAA Global Forecast System」。
- 按一下「訂閱」。
- 系統提示時,請保留
noaa_global_forecast_system
做為資料集名稱。視需要調整 weather_daily.sql
中 FROM 子句的資料集和資料表名稱。
- 針對資料集
OpenStreetMap Public Dataset
重複執行商店資訊搜尋。
- 調整包含下列項目的
FROM
子句:
BigQuery-public-data.geo_openstreetmap.planet_layers
postcode.sql
。
永續發展和 ESG 深入分析:Cortex Framework 結合 SAP 供應商的績效資料和進階 ESG 深入分析,更全面地比較全球營運的交貨績效、永續發展和風險。詳情請參閱鄧白氏資料來源。
一般注意事項
共用功能僅支援歐盟和美國地區,且部分資料集 (例如 NOAA Global Forecast) 僅在單一多地區提供。
如果您指定的位置與必要資料集可用的位置不同,建議您建立排程查詢,從共用連結資料集複製新記錄,然後使用轉移服務將這些新記錄複製到與其餘部署項目位於相同位置或區域的資料集。接著,您需要調整 SQL 檔案。
將這些 DAG 複製到 Cloud Composer 之前,請以依附元件的形式新增必要的 Python 模組:
Required modules:
pytrends~=4.9.2
holidays
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-09-04 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-09-04 (世界標準時間)。"],[[["\u003cp\u003eThis page provides instructions for configuring optional external datasets within the Cortex Framework Data Foundation deployment, which can be utilized to enhance enterprise systems of record with external data.\u003c/p\u003e\n"],["\u003cp\u003eConfiguring external datasets involves setting \u003ccode\u003ek9.deployDataset\u003c/code\u003e to \u003ccode\u003eTrue\u003c/code\u003e and setting up Directed Acyclic Graphs (DAGs) for each supported dataset like the holiday calendar, search trends, weather, and sustainability/ESG data.\u003c/p\u003e\n"],["\u003cp\u003eThe Holiday Calendar DAG retrieves special dates from PyPi Holidays, allowing customization of countries and years through the \u003ccode\u003eholiday_calendar.ini\u003c/code\u003e file.\u003c/p\u003e\n"],["\u003cp\u003eThe Trends DAG fetches "Interest Over Time" data from Google Search Trends, with configurable terms and date ranges in \u003ccode\u003etrends.ini\u003c/code\u003e, and recommends multiple copies for large term lists.\u003c/p\u003e\n"],["\u003cp\u003eThe Weather DAG uses public data from \u003ccode\u003eBigQuery-public-data.geo_openstreetmap.planet_layers\u003c/code\u003e and the \u003ccode\u003enoaa_global_forecast_system\u003c/code\u003e from Analytics Hub, both of which need to be available in the same region as other datasets.\u003c/p\u003e\n"]]],[],null,["# Configure external datasets\n===========================\n\nThis page describes an optional step to configure external datasets for\nthe Cortex Framework Data Foundation deployment. Some advanced\nuse cases might require external datasets to complement an enterprise system of\nrecord. In addition to external exchanges consumed from\n[BigQuery sharing (formerly Analytics Hub)](/bigquery/docs/analytics-hub-introduction),\nsome datasets might need custom or tailored methods to ingest data\nand join them with the reporting models.\n\nTo enable the following external datasets, set `k9.deployDataset` to `True`\nif you want Dataset to be deployed.\n\nConfigure the Directed Acyclic Graphs (DAGs) for the supported external datasets\nfollowing these steps:\n\n1. **Holiday Calendar:** This DAG retrieves the special dates from\n [PyPi Holidays](https://pypi.org/project/holidays/).\n\n | **Note:** If using sample data, keep default values.\n 1. Adjust the list of countries, the list of years, as well as other DAG parameters to retrieve holidays in [`holiday_calendar.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/holiday_calendar/holiday_calendar.ini).\n2. **Trends** : This DAG retrieves *Interest Over Time* for a specific set\n of terms from [Google Search trends](https://trends.google.com/trends/).\n The terms can be configured in [`trends.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/trends/trends.ini).\n\n 1. After an initial run, adjust the `start_date` to `'today 7-d'` in [`trends.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/trends/trends.ini).\n 2. Get familiarized with the results coming from the different terms to tune parameters.\n 3. We recommend partitioning large lists to multiple copies of this DAG running at different times.\n 4. For more information about the underlying library being used, see [Pytrends](https://pypi.org/project/pytrends/).\n3. **Weather** : By default, this DAG uses the publicly available\n test dataset [`BigQuery-public-data.geo_openstreetmap.planet_layers`](https://console.cloud.google.com/bigquery/analytics-hub/exchanges(analyticshub:search)?queryText=open%20street%20map).\n The query also relies on an NOAA dataset only available\n through Sharing: [`noaa_global_forecast_system`](https://console.cloud.google.com/bigquery/analytics-hub/exchanges(analyticshub:search)?queryText=noaa%20global%20forecast).\n\n **This dataset needs to be created in the same region as the other datasets prior to executing deployment**. If the datasets aren't available in your region, you can continue\n with the following instructions to transfer the data into the chosen region:\n 1. Go to the [**Sharing (Analytics Hub)**](https://console.cloud.google.com/bigquery/analytics-hub) page.\n 2. Click **Search listings**.\n 3. Search for **NOAA Global Forecast System**.\n 4. Click **Subscribe**.\n 5. When prompted, keep `noaa_global_forecast_system` as the name of the dataset. If needed, adjust the name of the dataset and table in the FROM clauses in `weather_daily.sql`.\n 6. Repeat the listing search for Dataset `OpenStreetMap Public Dataset`.\n 7. Adjust the `FROM` clauses containing: `BigQuery-public-data.geo_openstreetmap.planet_layers` in `postcode.sql`.\n4. **Sustainability and ESG insights** : Cortex Framework combines\n SAP supplier performance data with advanced ESG insights to compare\n delivery performance, sustainability and risks more holistically across\n global operations. For more information,\n see the [Dun \\& Bradstreet data source](/cortex/docs/dun-and-bradstreet).\n\nGeneral considerations\n----------------------\n\n- [Sharing](/bigquery/docs/analytics-hub-introduction)\n is only supported in EU and US locations,\n and some datasets, such as NOAA Global Forecast, are only offered\n in a single multi location.\n\n If you are targeting a location different\n from the one available for the required dataset, we recommended to create\n a [scheduled query](/bigquery/docs/scheduling-queries)\n to copy the new records from the Sharing\n linked dataset followed by a [transfer service](/bigquery/docs/dts-introduction)\n to copy those new records into a dataset located\n in the same location or region as the rest of your deployment.\n You then need to adjust the SQL files.\n- Before copying these DAGs to Cloud Composer, add the required\n python modules [as dependencies](/composer/docs/how-to/using/installing-python-dependencies#options_for_managing_python_packages):\n\n Required modules:\n pytrends~=4.9.2\n holidays"]]