透過集合功能整理內容
你可以依據偏好儲存及分類內容。
本頁面說明如何透過 Cortex Looker Block 取得跨媒體和產品連結洞察資料。有了這個 Looker Block,您就能將多個付費媒體平台 (包括 Google Ads、Meta、TikTok 和 YouTube (搭配 DV360)) 的廣告活動資料,透過 Google Cloud Cortex Framework for Marketing 提供的預先封裝擷取管道和報表檢視畫面,匯入 BigQuery,全面掌握廣告活動支出和成效。
這個管道也提供選項,可使用 Vertex AI 上的 Gemini 文字生成模型,將媒體廣告活動的文字表示與單一產品階層節點相符。舉例來說,名為「BMX - Reels - Reach」的廣告活動會與產品階層節點 ['Fitness & Sports', 'Bicycles', 'Special Bikes','BMX Bikes']
相符。
查看與特定產品類別和產品相關的廣告活動,在各個平台上的曝光次數和點擊次數高階明細。
可用的深入分析資訊
Cortex Framework 中的 Looker Block for Cross Media & Product Connected Insights 提供下列洞察資訊。
概略瞭解高層級成效和參與度指標,包括:
- 曝光總數
- 總點擊次數
- 點閱率 (CTR)
- 總費用
- 千次曝光出價 (CPM)
- 單次點擊出價 (CPC)
- 按月和媒體平台劃分的支出
- 每月累計總支出,以及各媒體平台的支出
- 依時間順序顯示的廣告活動
- 各媒體平台、廣告活動和國家/地區的曝光次數、點擊次數、點閱率和每千次曝光出價
- 依廣告活動和國家/地區顯示詳細成效
必要資料
如要取得這個區塊所需的 BigQuery 資料集,請按照 Cortex Framework 的安裝說明操作。
存放區
如要存取 Cortex Looker Block for Cross Media & Product Connected Insights,請前往官方 GitHub 存放區:block-cortex-cross-media。這個存放區包含必要的檢視畫面、探索和資訊主頁,可讓您將資料順暢整合至 Looker 環境。這些資源可做為基礎,協助您建立符合特定需求的自訂報表、視覺化效果和資訊主頁。
部署作業
如需瞭解如何部署 Cortex Looker Block,以取得跨媒體和產品連結洞察資料,請參閱「部署 Cortex Framework 的 Looker Block」。
其他注意事項
如要提升 Looker Block for Cross Media & Product Connected Insights 的效能和功能,請考慮下列事項:
- Liquid 範本語言:部分常數、檢視區塊、Explore 和資訊主頁會使用 Liquid 範本語言。詳情請參閱 Looker 的 Liquid 變數參考資料說明文件。
- 取消隱藏其他維度和指標:為簡化畫面,許多維度和指標都會隱藏。如果發現缺少任何有價值的項目,請在相關檢視畫面中,將欄位的
hidden
參數值設為 No
。
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-09-04 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-09-04 (世界標準時間)。"],[[["\u003cp\u003eThis Looker Block provides a unified view of campaign performance and spend across multiple paid media platforms like Google Ads, Meta, TikTok, and YouTube (with DV360), using data consolidated in BigQuery.\u003c/p\u003e\n"],["\u003cp\u003eIt offers insights into overall campaign performance, including total impressions, clicks, CTR, spend, CPM, and CPC.\u003c/p\u003e\n"],["\u003cp\u003eYou can analyze media platform performance and monthly spend trends, with a detailed breakdown by platform and country.\u003c/p\u003e\n"],["\u003cp\u003eThe Looker Block allows campaigns to be matched to specific product hierarchies using a Gemini text generation model on Vertex AI.\u003c/p\u003e\n"],["\u003cp\u003eThe block's resources, including views, Explores, and dashboards, are available on the block-cortex-cross-media GitHub repository, enabling users to customize reports and visualizations.\u003c/p\u003e\n"]]],[],null,["# Looker Block for Cross Media & Product Connected Insights\n\nLooker Block for Cross Media \\& Product Connected Insights\n==========================================================\n\nThis page describes the insights you can get from the Cortex Looker Block\nfor Cross Media \\& Product Connected Insights. With this Looker Block\nyou can get a comprehensive view of your campaign spend and performance by\ncombining your campaign data from multiple paid media platforms\nincluding Google Ads, Meta, TikTok and YouTube (with DV360) into\nBigQuery with pre-packaged ingestion pipelines and reporting views\nprovided by [Google Cloud Cortex Framework for Marketing](/cortex/docs/overview).\n\nThis pipeline also includes an option to use a Gemini text generation\nmodel on Vertex AI to match textual representations of media campaigns\nwith a single product hierarchy node. For example, a campaign named\n*\"BMX - Reels - Reach\"* matches the product hierarchy node\n`['Fitness & Sports', 'Bicycles', 'Special Bikes','BMX Bikes']`.\n\nSee a\nhigh level breakdown of volume of impressions and clicks from each platform for\ncampaigns relating to specific product category and product.\n\nAvailable insights\n------------------\n\nThe Looker Block for Cross Media \\& Product Connected Insights in\nCortex Framework offers the following insights.\n\nOverall campaign performance\n----------------------------\n\nOverview of high-level performance and engagement metrics including:\n\n- Total impressions\n- Total clicks\n- Click through rate (CTR)\n- Total Spend\n- Cost per Mille (CPM)\n- Cost per click (CPC)\n\n### Media platform performance and spend by month\n\n- Spend by month and media platform\n- Cumulative monthly spend in total and by media platform\n\n### Campaign performance\n\n- Campaigns in chronological view\n- Impressions, clicks, click through rate and cost per mille by media platform, campaign, and country\n- Detailed performance by campaign and country\n\nRequired Data\n-------------\n\nGet the required BigQuery datasets for this block by\nfollowing the installation instructions for\n[Cortex Framework](https://github.com/GoogleCloudPlatform/cortex-data-foundation).\n\nRepository\n----------\n\nTo access the Cortex Looker Block for Cross Media \\& Product Connected\nInsights, visit its official GitHub repository: [**block-cortex-cross-media**](https://github.com/looker-open-source/block-cortex-cross-media).\nThis repository contains essential views, Explores and dashboards that enable\nyou to seamlessly integrate data into your Looker environment.\nThese resources provide a solid foundation for creating custom reports,\nvisualizations, and dashboards tailored to your specific needs.\n\nDeployment\n----------\n\nFor instructions about how to deploy the Cortex Looker Block for\nCross Media \\& Product Connected Insights, see\n[Deploy Looker Blocks for Cortex Framework](/cortex/docs/looker-block-deployment).\n\n### Other Considerations\n\nFor optimizing the performance and functionality of your\nLooker Block for Cross Media \\& Product Connected Insights\nconsider the following:\n\n- **Liquid Templating Language** : Some constants, views, Explores and dashboards use liquid templating language. For more information, see Looker's [Liquid Variable Reference](/looker/docs/liquid-variable-reference) documentation.\n- **Unhide additional dimensions and measures** : Many dimensions and measures are hidden for simplicity. If you find anything valuable missing, set field's `hidden` parameter value to `No` in the relevant views."]]