En este documento, se describe cómo habilitar un tiempo de ejecución predeterminado con GPUs para los usuarios de Colab Enterprise en un proyecto. Después de habilitar un entorno de ejecución predeterminado con GPUs, los usuarios pueden cambiar de un entorno de ejecución predeterminado normal a uno con GPUs haciendo clic en un botón de su notebook.
Este documento está dirigido a los administradores de Colab Enterprise que deseen habilitar tiempos de ejecución predeterminados con GPUs para otros usuarios de su organización. Se supone que tienes conocimientos sobre lo siguiente:
Cómo administrar los entornos de ejecución y las plantillas de entorno de ejecución de Colab Enterprise
Cómo usar Identity and Access Management (IAM) para controlar el acceso
Descripción general
Para permitir que los usuarios cambien a un entorno de ejecución predeterminado con GPUs, un administrador (roles/aiplatform.colabEnterpriseAdmin) o una cuenta de usuario con el permiso aiplatform.notebookRuntimeTemplates.create primero deben crear un entorno de ejecución predeterminado con GPUs.
La primera vez que creas un entorno de ejecución predeterminado con GPUs, Colab Enterprise crea una nueva plantilla de entorno de ejecución predeterminado que incluye GPUs en sus especificaciones. El entorno de ejecución predeterminado original no se ve afectado y existe hasta que vence o se borra. Después de que se cree la nueva plantilla de entorno de ejecución predeterminado con GPU, cualquier usuario con el permiso aiplatform.notebookRuntimes.assign en el proyecto y el permiso aiplatform.notebookRuntimeTemplates.apply en la plantilla de entorno de ejecución podrá crear y usar un entorno de ejecución predeterminado con GPU. Estos permisos se incluyen en el rol de usuario de Colab Enterprise (roles/aiplatform.colabEnterpriseUser).
Especificaciones
El entorno de ejecución predeterminado con GPUs tiene especificaciones diferentes a las del entorno de ejecución predeterminado original. Los tipos de máquinas, las GPUs y los tipos de discos de datos disponibles varían según la región, por lo que algunas especificaciones pueden ser diferentes de tu entorno de ejecución predeterminado original.
En la siguiente tabla, se describen las especificaciones de un tiempo de ejecución predeterminado con GPUs según la región del tiempo de ejecución predeterminado.
Descripción de la región
Especificaciones de entorno de ejecución predeterminado
Regiones que admiten GPUs L4
Tipo de máquina: g2-standard-4
Acelerador: 1 acelerador NVIDIA_L4
Disco de datos: 100 GB pd-balanced
Regiones que no admiten GPUs L4, pero sí admiten GPUs T4
Tipo de máquina: n1-standard-4
Acelerador: 1 acelerador NVIDIA_TESLA_T4
Disco de datos: 100 GB pd-standard
Regiones que no admiten GPU L4 o T4
No se admiten los tiempos de ejecución predeterminados con GPUs.
Disponibilidad del acelerador
Colab Enterprise admite entornos de ejecución predeterminados con los siguientes tipos de aceleradores:
L4
T4
Para obtener información sobre la disponibilidad regional de estos aceleradores, consulta Usa aceleradores.
Antes de comenzar
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Para asegurarte de que tu cuenta de usuario tenga los permisos necesarios para habilitar los tiempos de ejecución predeterminados con GPUs en Colab Enterprise, pídele a tu administrador que le otorgue a tu cuenta de usuario el rol de administrador de Colab Enterprise (roles/aiplatform.colabEnterpriseAdmin)
IAM role on the project.
In the Region menu, select the region that contains your notebook.
Click the notebook that you want to open. If you haven't created a notebook yet,
create a notebook.
In your notebook, click Connect.
After Colab Enterprise connects to the default runtime, in the
top right corner of your notebook, click the button to switch to
a default runtime with GPUs. For example, if your notebook is in
a region that supports L4 accelerators, click
Switch to L4.
Colab Enterprise creates a new default runtime that has
GPUs, and then connects to the runtime. The ability to switch to a
default runtime with GPUs is enabled for other users in the project.
Turn off GPUs for default runtimes
To turn off the ability to switch to a default runtime with GPUs, you
must delete the runtime template named Default with GPU.
See Delete a runtime template.
Limitations
Default runtimes with GPUs are only available in regions that support
specific accelerator availability. See
Accelerator availability.
You must first connect a notebook to a default runtime to be able to switch to
a default runtime with GPUs.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[],[],null,["# Enable default runtimes with GPUs\n=================================\n\n|\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nFor support during the preview, email\n[vertex-notebooks-previews-external@google.com](mailto:vertex-notebooks-previews-external@google.com).\n\nThis document describes how to enable a default runtime with GPUs for\nColab Enterprise users in a project. After enabling a\ndefault runtime with GPUs, users can switch from a regular default runtime\nto a default runtime with GPUs by clicking a button in their notebook.\n\nThis document is intended for Colab Enterprise administrators who\nwant to enable default runtimes with GPUs for other users in their\norganization. It assumes you have knowledge of the following:\n\n- How to manage Colab Enterprise runtimes and runtime templates.\n- How to use Identity and Access Management (IAM) to control access.\n\nOverview\n--------\n\nTo enable users to switch to a default runtime with GPUs, an administrator\n([`roles/aiplatform.colabEnterpriseAdmin`](/colab/docs/access-control#aiplatform.colabEnterpriseAdmin))\nor a user account with the `aiplatform.notebookRuntimeTemplates.create`\npermission must first create a default runtime with GPUs.\n\nThe first time that you create a default runtime with GPUs,\nColab Enterprise creates a new default runtime template that\nincludes GPUs in its specifications. The original default runtime isn't\naffected and exists until it expires or it's deleted. After the\nnew default runtime template with GPUs is created, any user with\nthe `aiplatform.notebookRuntimes.assign` permission on the project\nand the `aiplatform.notebookRuntimeTemplates.apply` permission on the\nruntime template can create and use a default runtime with GPUs. These\npermissions are included in the Colab Enterprise User\n([`roles/aiplatform.colabEnterpriseUser`](/colab/docs/access-control#aiplatform.colabEnterpriseUser))\nrole.\n\n### Specifications\n\nThe default runtime with GPUs has different specifications than\nthe original default runtime. The machine types, GPUs, and data disk types\nthat are available vary by region, so some specifications can be different\nfrom your original default runtime.\n\nThe following table describes the specifications for\na default runtime with GPUs based on the region of the default runtime.\n\n### Accelerator availability\n\nColab Enterprise supports default runtimes with the following\naccelerator types:\n\n- L4\n- T4\n\nTo learn about the regional availability of these accelerators, see\n[Using accelerators](/vertex-ai/docs/general/locations#accelerators).\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Vertex AI, Dataform, and Compute Engine APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com, dataform.googleapis.com, compute.googleapis.com&redirect=https://console.cloud.google.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Vertex AI, Dataform, and Compute Engine APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com, dataform.googleapis.com, compute.googleapis.com&redirect=https://console.cloud.google.com)\n\n### Required roles\n\n\nTo ensure that your user account has the necessary\npermissions to enable default runtimes with GPUs in Colab Enterprise,\n\nask your administrator to grant your user account the\n\n\nColab Enterprise Admin ([`roles/aiplatform.colabEnterpriseAdmin`](/vertex-ai/docs/general/access-control#aiplatform.colabEnterpriseAdmin)`)\nIAM role on the project.\n\n\n`\n| `\n| `**Important:**` You must grant this role\n| to your user account, `*not*` to your user account. Failure to grant the role to the correct principal might result in permission errors.\n| `\n`\n\n\nFor more information about granting roles, see `[Manage access to projects, folders, and organizations](/iam/docs/granting-changing-revoking-access)`.\n\n`\n\n\u003cbr /\u003e\n\n`\n\n\n`\n\n\nYour administrator might also be able to give your user account\nthe required permissions through [custom\nroles](/iam/docs/creating-custom-roles) or other [predefined\nroles](/iam/docs/roles-overview#predefined).\n`\n\n\n` One or more of the required roles includes the `dataform.repositories.list` permission. Users who are granted the `dataform.repositories.list` permission or the [Code Creator\n| (`roles/dataform.codeCreator`)](/iam/docs/understanding-roles#dataform.codeCreator) role in a project can list the names of code assets in that project by using the Dataform API or the Dataform command-line interface (CLI). Non-administrators using BigQuery Studio can only see code assets that they created or that were shared with them.\n`\n\n\n`\n\nEnable GPUs for default runtimes\n--------------------------------\n\n`\n\n\n`\n\nTo enable GPUs for default runtimes, do the following:\n`\n\n\n`\n\n1. In the Google Cloud console, go to\n the Colab Enterprise **My notebooks** page.\n\n [Go to My notebooks](https://console.cloud.google.com/vertex-ai/colab/notebooks)\n2. In the **Region** menu, select the region that contains your notebook.\n\n3. Click the notebook that you want to open. If you haven't created a notebook yet,\n [create a notebook](/colab/docs/create-console-quickstart#create).\n\n4. In your notebook, click **Connect** . \n\n\n5. After Colab Enterprise connects to the default runtime, in the\n top right corner of your notebook, click the button to switch to\n a default runtime with GPUs. For example, if your notebook is in\n a region that supports L4 accelerators, click\n **Switch to L4** . \n\n\n`\n\n\n`\n\nColab Enterprise creates a new default runtime that has\nGPUs, and then connects to the runtime. The ability to switch to a\ndefault runtime with GPUs is enabled for other users in the project.\n`\n\n\n`\n\nTurn off GPUs for default runtimes\n----------------------------------\n\n`\n\n`\n\nTo turn off the ability to switch to a default runtime with GPUs, you\nmust delete the runtime template named `Default with GPU`.\nSee [Delete a runtime template](/colab/docs/create-runtime-template#delete).\n`\n\n`\n\nLimitations\n-----------\n\n`\n\n`\n\n- Default runtimes with GPUs are only available in regions that support\n specific accelerator availability. See\n [Accelerator availability](#accelerator-availability).\n\n- You must first connect a notebook to a default runtime to be able to switch to\n a default runtime with GPUs.\n\n`\n\n`\n\nWhat's next\n-----------\n\n`\n\n`\n\n- To manage your runtime, see [Manage runtimes](/colab/docs/manage-runtimes).\n- Learn more about [runtimes and runtime templates](/colab/docs/runtimes).\n\n`\n\n\n``\n\n`"]]