기존 Cloud Storage 버킷에 액세스하는 스크립트를 실행하는 샘플 Batch 작업을 만들고 제출합니다. 작업 정의는 작업의 태스크가 입력 데이터를 읽거나 결과를 쓸 수 있도록 버킷을 모든 VM에 마운트하도록 지정합니다. 작업을 제출하면 Batch가 Compute Engine VM에서 자동으로 작업을 큐에 추가하고 예약하며 실행합니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
Go
자세한 내용은 Batch Go API 참조 문서를 확인하세요.
Batch에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import (
"context"
"fmt"
"io"
batch "cloud.google.com/go/batch/apiv1"
batchpb "google.golang.org/genproto/googleapis/cloud/batch/v1"
durationpb "google.golang.org/protobuf/types/known/durationpb"
)
// Creates and runs a job that executes the specified script
func createScriptJobWithBucket(w io.Writer, projectID, region, jobName, bucketName string) error {
// projectID := "your_project_id"
// region := "us-central1"
// jobName := "some-job"
// jobName := "some-bucket"
ctx := context.Background()
batchClient, err := batch.NewClient(ctx)
if err != nil {
return fmt.Errorf("NewClient: %w", err)
}
defer batchClient.Close()
// Define what will be done as part of the job.
command := &batchpb.Runnable_Script_Text{
Text: "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt",
}
// Specify the Google Cloud Storage bucket to mount
volume := &batchpb.Volume{
Source: &batchpb.Volume_Gcs{
Gcs: &batchpb.GCS{
RemotePath: bucketName,
},
},
MountPath: "/mnt/share",
MountOptions: []string{},
}
// We can specify what resources are requested by each task.
resources := &batchpb.ComputeResource{
// CpuMilli is milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
CpuMilli: 500,
MemoryMib: 16,
}
taskSpec := &batchpb.TaskSpec{
Runnables: []*batchpb.Runnable{{
Executable: &batchpb.Runnable_Script_{
Script: &batchpb.Runnable_Script{Command: command},
},
}},
ComputeResource: resources,
MaxRunDuration: &durationpb.Duration{
Seconds: 3600,
},
MaxRetryCount: 2,
Volumes: []*batchpb.Volume{volume},
}
// Tasks are grouped inside a job using TaskGroups.
taskGroups := []*batchpb.TaskGroup{
{
TaskCount: 4,
TaskSpec: taskSpec,
},
}
// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
allocationPolicy := &batchpb.AllocationPolicy{
Instances: []*batchpb.AllocationPolicy_InstancePolicyOrTemplate{{
PolicyTemplate: &batchpb.AllocationPolicy_InstancePolicyOrTemplate_Policy{
Policy: &batchpb.AllocationPolicy_InstancePolicy{
MachineType: "e2-standard-4",
},
},
}},
}
// We use Cloud Logging as it's an out of the box available option
logsPolicy := &batchpb.LogsPolicy{
Destination: batchpb.LogsPolicy_CLOUD_LOGGING,
}
jobLabels := map[string]string{"env": "testing", "type": "script"}
// The job's parent is the region in which the job will run
parent := fmt.Sprintf("projects/%s/locations/%s", projectID, region)
job := batchpb.Job{
TaskGroups: taskGroups,
AllocationPolicy: allocationPolicy,
Labels: jobLabels,
LogsPolicy: logsPolicy,
}
req := &batchpb.CreateJobRequest{
Parent: parent,
JobId: jobName,
Job: &job,
}
created_job, err := batchClient.CreateJob(ctx, req)
if err != nil {
return fmt.Errorf("unable to create job: %w", err)
}
fmt.Fprintf(w, "Job created: %v\n", created_job)
return nil
}
Java
자세한 내용은 Batch Java API 참조 문서를 확인하세요.
Batch에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import com.google.cloud.batch.v1.AllocationPolicy;
import com.google.cloud.batch.v1.AllocationPolicy.InstancePolicy;
import com.google.cloud.batch.v1.AllocationPolicy.InstancePolicyOrTemplate;
import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.GCS;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.LogsPolicy.Destination;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.Runnable.Script;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.cloud.batch.v1.Volume;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class CreateWithMountedBucket {
public static void main(String[] args)
throws IOException, ExecutionException, InterruptedException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
// Project ID or project number of the Cloud project you want to use.
String projectId = "YOUR_PROJECT_ID";
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
String region = "europe-central2";
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
String jobName = "JOB_NAME";
// Name of the bucket to be mounted for your Job.
String bucketName = "BUCKET_NAME";
createScriptJobWithBucket(projectId, region, jobName, bucketName);
}
// This method shows how to create a sample Batch Job that will run
// a simple command on Cloud Compute instances.
public static void createScriptJobWithBucket(String projectId, String region, String jobName,
String bucketName)
throws IOException, ExecutionException, InterruptedException, TimeoutException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the `batchServiceClient.close()` method on the client to safely
// clean up any remaining background resources.
try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {
// Define what will be done as part of the job.
Runnable runnable =
Runnable.newBuilder()
.setScript(
Script.newBuilder()
.setText(
"echo Hello world from task ${BATCH_TASK_INDEX}. >> "
+ "/mnt/share/output_task_${BATCH_TASK_INDEX}.txt")
// You can also run a script from a file. Just remember, that needs to be a
// script that's already on the VM that will be running the job.
// Using setText() and setPath() is mutually exclusive.
// .setPath("/tmp/test.sh")
.build())
.build();
Volume volume = Volume.newBuilder()
.setGcs(GCS.newBuilder()
.setRemotePath(bucketName)
.build())
.setMountPath("/mnt/share")
.build();
// We can specify what resources are requested by each task.
ComputeResource computeResource =
ComputeResource.newBuilder()
// In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
.setCpuMilli(500)
// In MiB.
.setMemoryMib(16)
.build();
TaskSpec task =
TaskSpec.newBuilder()
// Jobs can be divided into tasks. In this case, we have only one task.
.addRunnables(runnable)
.addVolumes(volume)
.setComputeResource(computeResource)
.setMaxRetryCount(2)
.setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
.build();
// Tasks are grouped inside a job using TaskGroups.
// Currently, it's possible to have only one task group.
TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(4).setTaskSpec(task).build();
// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
InstancePolicy instancePolicy =
InstancePolicy.newBuilder().setMachineType("e2-standard-4").build();
AllocationPolicy allocationPolicy =
AllocationPolicy.newBuilder()
.addInstances(InstancePolicyOrTemplate.newBuilder().setPolicy(instancePolicy).build())
.build();
Job job =
Job.newBuilder()
.addTaskGroups(taskGroup)
.setAllocationPolicy(allocationPolicy)
.putLabels("env", "testing")
.putLabels("type", "script")
.putLabels("mount", "bucket")
// We use Cloud Logging as it's an out of the box available option.
.setLogsPolicy(
LogsPolicy.newBuilder().setDestination(Destination.CLOUD_LOGGING).build())
.build();
CreateJobRequest createJobRequest =
CreateJobRequest.newBuilder()
// The job's parent is the region in which the job will run.
.setParent(String.format("projects/%s/locations/%s", projectId, region))
.setJob(job)
.setJobId(jobName)
.build();
Job result =
batchServiceClient
.createJobCallable()
.futureCall(createJobRequest)
.get(5, TimeUnit.MINUTES);
System.out.printf("Successfully created the job: %s", result.getName());
}
}
}
Node.js
자세한 내용은 Batch Node.js API 참조 문서를 확인하세요.
Batch에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
/**
* TODO(developer): Uncomment and replace these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
/**
* The region you want to the job to run in. The regions that support Batch are listed here:
* https://cloud.google.com/batch/docs/get-started#locations
*/
// const region = 'us-central-1';
/**
* The name of the job that will be created.
* It needs to be unique for each project and region pair.
*/
// const jobName = 'YOUR_JOB_NAME';
/**
* The name of the bucket to be mounted.
*/
// const bucketName = 'YOUR_BUCKET_NAME';
// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;
// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();
// Define what will be done as part of the job.
const task = new batch.TaskSpec();
const runnable = new batch.Runnable();
runnable.script = new batch.Runnable.Script();
runnable.script.text =
'echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt';
// You can also run a script from a file. Just remember, that needs to be a script that's
// already on the VM that will be running the job. Using runnable.script.text and runnable.script.path is mutually
// exclusive.
// runnable.script.path = '/tmp/test.sh'
task.runnables = [runnable];
const gcsBucket = new batch.GCS();
gcsBucket.remotePath = bucketName;
const gcsVolume = new batch.Volume();
gcsVolume.gcs = gcsBucket;
gcsVolume.mountPath = '/mnt/share';
task.volumes = [gcsVolume];
// We can specify what resources are requested by each task.
const resources = new batch.ComputeResource();
resources.cpuMilli = 2000; // in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
resources.memoryMib = 16;
task.computeResource = resources;
task.maxRetryCount = 2;
task.maxRunDuration = {seconds: 3600};
// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup();
group.taskCount = 4;
group.taskSpec = task;
// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const allocationPolicy = new batch.AllocationPolicy();
const policy = new batch.AllocationPolicy.InstancePolicy();
policy.machineType = 'e2-standard-4';
const instances = new batch.AllocationPolicy.InstancePolicyOrTemplate();
instances.policy = policy;
allocationPolicy.instances = [instances];
const job = new batch.Job();
job.name = jobName;
job.taskGroups = [group];
job.allocationPolicy = allocationPolicy;
job.labels = {env: 'testing', type: 'script'};
// We use Cloud Logging as it's an option available out of the box
job.logsPolicy = new batch.LogsPolicy();
job.logsPolicy.destination = batch.LogsPolicy.Destination.CLOUD_LOGGING;
// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;
async function callCreateJob() {
// Construct request
const request = {
parent,
jobId: jobName,
job,
};
// Run request
const response = await batchClient.createJob(request);
console.log(response);
}
callCreateJob();
Python
자세한 내용은 Batch Python API 참조 문서를 확인하세요.
Batch에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
from google.cloud import batch_v1
def create_script_job_with_bucket(project_id: str, region: str, job_name: str, bucket_name: str) -> batch_v1.Job:
"""
This method shows how to create a sample Batch Job that will run
a simple command on Cloud Compute instances.
Args:
project_id: project ID or project number of the Cloud project you want to use.
region: name of the region you want to use to run the job. Regions that are
available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
job_name: the name of the job that will be created.
It needs to be unique for each project and region pair.
bucket_name: name of the bucket to be mounted for your Job.
Returns:
A job object representing the job created.
"""
client = batch_v1.BatchServiceClient()
# Define what will be done as part of the job.
task = batch_v1.TaskSpec()
runnable = batch_v1.Runnable()
runnable.script = batch_v1.Runnable.Script()
runnable.script.text = "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt"
task.runnables = [runnable]
gcs_bucket = batch_v1.GCS()
gcs_bucket.remote_path = bucket_name
gcs_volume = batch_v1.Volume()
gcs_volume.gcs = gcs_bucket
gcs_volume.mount_path = '/mnt/share'
task.volumes = [gcs_volume]
# We can specify what resources are requested by each task.
resources = batch_v1.ComputeResource()
resources.cpu_milli = 500 # in milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
resources.memory_mib = 16
task.compute_resource = resources
task.max_retry_count = 2
task.max_run_duration = "3600s"
# Tasks are grouped inside a job using TaskGroups.
# Currently, it's possible to have only one task group.
group = batch_v1.TaskGroup()
group.task_count = 4
group.task_spec = task
# Policies are used to define on what kind of virtual machines the tasks will run on.
# In this case, we tell the system to use "e2-standard-4" machine type.
# Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
allocation_policy = batch_v1.AllocationPolicy()
policy = batch_v1.AllocationPolicy.InstancePolicy()
policy.machine_type = "e2-standard-4"
instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
instances.policy = policy
allocation_policy.instances = [instances]
job = batch_v1.Job()
job.task_groups = [group]
job.allocation_policy = allocation_policy
job.labels = {"env": "testing", "type": "script", "mount": "bucket"}
# We use Cloud Logging as it's an out of the box available option
job.logs_policy = batch_v1.LogsPolicy()
job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING
create_request = batch_v1.CreateJobRequest()
create_request.job = job
create_request.job_id = job_name
# The job's parent is the region in which the job will run
create_request.parent = f"projects/{project_id}/locations/{region}"
return client.create_job(create_request)
다음 단계
다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.