Tune vector query performance

This document shows you how to tune your indexes to achieve faster query performance and better recall.

Analyze your queries

Use the EXPLAIN ANALYZE command to analyze your query insights as shown in the following example SQL query.

  EXPLAIN ANALYZE SELECT result-column FROM my-table
    ORDER BY EMBEDDING_COLUMN ::vector
    USING INDEX my-scann-index
    <-> embedding('text-embedding-005', 'What is a database?')
    LIMIT 1;

The example response QUERY PLAN includes information such as the time taken, the number of rows scanned or returned, and the resources used.

Limit  (cost=0.42..15.27 rows=1 width=32) (actual time=0.106..0.132 rows=1 loops=1)
  ->  Index Scan using my-scann-index on my-table  (cost=0.42..858027.93 rows=100000 width=32) (actual time=0.105..0.129 rows=1 loops=1)
        Order By: (embedding_column <-> embedding('text-embedding-005', 'What is a database?')::vector(768))
        Limit value: 1
Planning Time: 0.354 ms
Execution Time: 0.141 ms

View vector index metrics

You can use the vector index metrics to review performance of your vector index, identify areas for improvement, and tune your index based on the metrics, if needed.

To view all vector index metrics, run the following SQL query, which uses the pg_stat_ann_indexes view:

SELECT * FROM pg_stat_ann_indexes;

For more information about the complete list of metrics, see Vector index metrics.

What's next