Menelusuri Produk

Setelah membuat set produk dan kumpulan produk telah diindeks, Anda dapat membuat kueri untuk set produk tersebut menggunakan Cloud Vision API.

Anda dapat menemukan produk yang serupa dengan gambar tertentu dengan meneruskan URI Google Cloud Storage, URL web, atau string berenkode base64 ke Product Search Vision API. Lihat Batas Penggunaan untuk mengetahui informasi kuota dan ukuran permintaan maksimum.

Lihat topik Memahami respons penelusuran & multi-deteksi untuk contoh deteksi produk tunggal dan multi-deteksi produk dalam gambar.

Menelusuri menggunakan gambar lokal

Contoh berikut membaca file lokal dan membuat kueri API dengan menyertakan bagian dari byte gambar mentah (gambar berenkode base64) dalam permintaan.

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • BASE64_ENCODED_IMAGE: Representasi base64 (string ASCII) dari data gambar biner Anda. String ini akan terlihat seperti string berikut:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Kunjungi topik enkode base64 untuk informasi selengkapnya.
  • PROJECT_ID: ID project Google Cloud Anda.
  • LOCATION_ID: ID lokasi yang valid. ID lokasi yang valid adalah: us-west1, us-east1, europe-west1, dan asia-east1.
  • PRODUCT_SET_ID: ID untuk set produk tempat Anda ingin menjalankan operasi.

Pertimbangan khusus kolom:

  • features.maxResults - Jumlah hasil maksimum yang akan ditampilkan.
  • imageContext.productCategories - Kategori produk yang akan ditelusuri. Saat ini Anda hanya dapat menentukan satu kategori produk (peralatan rumah tangga, pakaian, mainan, barang kemasan, dan umum ).
  • imageContext.filter - (Opsional) Ekspresi pemfilteran nilai kunci (atau beberapa ekspresi) untuk label produk. Format: "key=value". Memfilter key-value pair dapat ditautkan dengan ekspresi AND atau OR: "color=blue DAN,style=mens", atau "color=blue ATAUcolor=black". Jika menggunakan ekspresi ORsemua kunci dalam ekspresi harus sama singkat ini.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "content": base64-encoded-image
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

JSON respons mencakup dua jenis hasil berikut:

  • productSearchResults - Berisi daftar produk yang cocok untuk seluruh gambar. Dalam respons sampel, produk yang cocok adalah: product_id65, product_id35, product_id34, product_id62, product_id32.
  • productGroupedResults - Berisi koordinat kotak pembatas dan item yang cocok untuk setiap produk yang diidentifikasi dalam gambar. Dalam respons berikut, hanya ada satu produk yang diidentifikasi, diikuti dengan produk yang cocok dalam sampel kumpulan produk: product_id65, product_id35, product_id34, product_id93, product_id62.

Perhatikan bahwa meskipun ada tumpang tindih di kedua jenis hasil, mungkin juga ada perbedaan (misalnya, product_id32 dan product_id93 dalam respons).

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Go Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import (
	"context"
	"fmt"
	"io"
	"os"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProducts searches for products from a product set similar to products in an image file.
func getSimilarProducts(w io.Writer, projectID string, location string, productSetID string, productCategory string, file string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	f, err := os.Open(file)
	if err != nil {
		return fmt.Errorf("Open: %w", err)
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return fmt.Errorf("NewImageFromReader: %w", err)
	}

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Java Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * Search similar products to image in local file.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param filePath - Local file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws IOException - on I/O errors.
 */
public static void getSimilarProductsFile(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String filePath,
    String filter)
    throws IOException {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.format(projectId, computeRegion, productSetId);

    // Read the image as a stream of bytes.
    File imgPath = new File(filePath);
    byte[] content = Files.readAllBytes(imgPath.toPath());

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    // The input image can be a HTTPS link or Raw image bytes.
    // Example:
    // To use HTTP link replace with below code
    //  ImageSource source = ImageSource.newBuilder().setImageUri(imageUri).build();
    //  Image image = Image.newBuilder().setSource(source).build();
    Image image = Image.newBuilder().setContent(ByteString.copyFrom(content)).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Node.js Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
const fs = require('fs');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsFile() {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'nodejs-docs-samples';
  // const location = 'us-west1';
  // const productSetId = 'indexed_product_set_id_for_testing';
  // const productCategory = 'apparel';
  // const filePath = './resources/shoes_1.jpg';
  // const filter = '';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );
  const content = fs.readFileSync(filePath, 'base64');
  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {content: content},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  const results = response['responses'][0]['productSearchResults']['results'];
  console.log('\nSimilar product information:');
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsFile();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Python Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import vision

def get_similar_products_file(
    project_id,
    location,
    product_set_id,
    product_category,
    file_path,
    filter,
    max_results,
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        file_path: Local file path of the image to be searched.
        filter: Condition to be applied on the labels.
                Example for filter: (color = red OR color = blue) AND style = kids
                It will search on all products with the following labels:
                color:red AND style:kids
                color:blue AND style:kids
        max_results: The maximum number of results (matches) to return. If omitted, all results are returned.
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Read the image as a stream of bytes.
    with open(file_path, "rb") as image_file:
        content = image_file.read()

    # Create annotate image request along with product search feature.
    image = vision.Image(content=content)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(
        image, image_context=image_context, max_results=max_results
    )

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk Ruby.

Telusuri menggunakan gambar jarak jauh

Anda juga memiliki opsi untuk menemukan produk yang serupa pada gambar yang diberikan dengan menentukan URI Google Cloud Storage ke gambar tersebut.

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • gs://storage-bucket/filename.jpg
  • PROJECT_ID: ID project Google Cloud Anda.
  • LOCATION_ID: ID lokasi yang valid. ID lokasi yang valid adalah: us-west1, us-east1, europe-west1, dan asia-east1.
  • PRODUCT_SET_ID: ID untuk set produk tempat Anda ingin menjalankan operasi.

Pertimbangan khusus kolom:

  • features.maxResults - Jumlah hasil maksimum yang akan ditampilkan.
  • imageContext.productCategories - Kategori produk yang akan ditelusuri. Saat ini Anda hanya dapat menentukan satu kategori produk (peralatan rumah tangga, pakaian, mainan, barang kemasan, dan umum ).
  • imageContext.filter - (Opsional) Ekspresi pemfilteran nilai kunci (atau beberapa ekspresi) untuk label produk. Format: "key=value". Memfilter key-value pair dapat ditautkan dengan ekspresi AND atau OR: "color=blue DAN,style=mens", atau "color=blue ATAUcolor=black". Jika menggunakan ekspresi ORsemua kunci dalam ekspresi harus sama singkat ini.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

JSON respons mencakup dua jenis hasil berikut:

  • productSearchResults - Berisi daftar produk yang cocok untuk seluruh gambar. Dalam respons sampel, produk yang cocok adalah: product_id65, product_id35, product_id34, product_id62, product_id32.
  • productGroupedResults - Berisi koordinat kotak pembatas dan item yang cocok untuk setiap produk yang diidentifikasi dalam gambar. Dalam respons berikut, hanya ada satu produk yang diidentifikasi, diikuti dengan produk yang cocok dalam sampel kumpulan produk: product_id65, product_id35, product_id34, product_id93, product_id62.

Perhatikan bahwa meskipun ada tumpang tindih di kedua jenis hasil, mungkin juga ada perbedaan (misalnya, product_id32 dan product_id93 dalam respons).

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Go Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import (
	"context"
	"fmt"
	"io"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProductsURI searches for products from a product set similar to products in an image file on GCS.
func getSimilarProductsURI(w io.Writer, projectID string, location string, productSetID string, productCategory string, imageURI string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	image := vision.NewImageFromURI(imageURI)

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Java Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * Search similar products to image in Google Cloud Storage.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param gcsUri - GCS file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws Exception - on errors.
 */
public static void getSimilarProductsGcs(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String gcsUri,
    String filter)
    throws Exception {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.of(projectId, computeRegion, productSetId).toString();

    // Get the image from Google Cloud Storage
    ImageSource source = ImageSource.newBuilder().setGcsImageUri(gcsUri).build();

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    Image image = Image.newBuilder().setSource(source).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Node.js Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsGcs(
  projectId,
  location,
  productSetId,
  productCategory,
  filePath,
  filter
) {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'Your Google Cloud project Id';
  // const location = 'A compute region name';
  // const productSetId = 'Id of the product set';
  // const productCategory = 'Category of the product';
  // const filePath = 'Local file path of the image to be searched';
  // const filter = 'Condition to be applied on the labels';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );

  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {source: {gcsImageUri: filePath}},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  console.log(request.image);

  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  console.log('\nSimilar product information:');

  const results = response['responses'][0]['productSearchResults']['results'];
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsGcs();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Vision API Product Search, lihat library klien Vision API Product Search. Untuk informasi selengkapnya, lihat dokumentasi referensi API Python Product Search Vision API.

Untuk mengautentikasi ke Product Search Vision API, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import vision

def get_similar_products_uri(
    project_id, location, product_set_id, product_category, image_uri, filter
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        image_uri: Cloud Storage location of image to be searched.
        filter: Condition to be applied on the labels.
        Example for filter: (color = red OR color = blue) AND style = kids
        It will search on all products with the following labels:
        color:red AND style:kids
        color:blue AND style:kids
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Create annotate image request along with product search feature.
    image_source = vision.ImageSource(image_uri=image_uri)
    image = vision.Image(source=image_source)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(image, image_context=image_context)

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Product Search Vision API untuk Ruby.