Rechercher des produits

Une fois que vous avez créé votre ensemble de produits et que celui-ci a été indexé, vous pouvez l'interroger à l'aide de l'API Cloud Vision.

Pour rechercher des produits semblables à une image donnée, transmettez l'URI Google Cloud Storage, l'URL Web ou la chaîne encodée en base64 de l'image à la fonctionnalité de recherche de produits de l'API Vision. Consultez la page Limites d'utilisation pour connaître la taille maximale des requêtes et obtenir des informations sur les quotas.

Pour obtenir des exemples de détection d'un seul produit et de détection de plusieurs produits dans une image, consultez la section Comprendre les réponses des recherches et la multidétection.

Effectuer une recherche à l'aide d'une image locale

Les exemples suivants lisent un fichier local et interrogent l'API en intégrant dans la requête les octets bruts de l'image (qui est encodée en base64).

REST

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • BASE64_ENCODED_IMAGE : représentation en base64 (chaîne ASCII) de vos données d'image binaires. Cette chaîne doit ressembler à la chaîne suivante :
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Consultez la section encodage en base64 pour plus d'informations.
  • PROJECT_ID : ID de votre projet Google Cloud.
  • LOCATION_ID : identifiant d'emplacement valide. Les identifiants d'emplacement valides sont : us-west1, us-east1, europe-west1 et asia-east1.
  • PRODUCT_SET_ID : ID de l'ensemble de produits sur lequel vous souhaitez exécuter l'opération.

Remarque sur les champs :

  • features.maxResults : nombre maximal de résultats à afficher.
  • imageContext.productCategories : catégorie de produits dans laquelle effectuer la recherche. Actuellement, vous ne pouvez spécifier qu'une seule catégorie de produits : "homegoods" (articles de maison), "apparel" (vêtements), "toys" (jouets), "packaged goods" (biens de consommation courante) et "general" (général).
  • imageContext.filter (facultatif) - Expression (ou expressions multiples) de filtrage par clé-valeur pour le libellé de produit. Format : "key=value". Le filtrage des paires clé-valeur peut être lié aux expressions AND ou OR : "color=blue AND style=mens" ou "color=blue OR color=black ". Si vous utilisez l'expression OR, toutes les clés de l'expression doivent être identiques.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "content": base64-encoded-image
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

La réponse JSON inclut les deux types de résultats suivants :

  • productSearchResults : contient une liste de produits correspondants pour l'image entière. Dans l'exemple de réponse, les produits correspondants sont : product_id65, product_id35, product_id34, product_id62, product_id32.
  • productGroupedResults : contient les coordonnées du cadre de délimitation et les éléments correspondants pour chaque produit identifié dans l'image. Dans la réponse suivante, un seul produit a été identifié, suivi des produits correspondants dans l'exemple d'ensemble de produits : product_id65, product_id35, product_id34, product_id93, product_id62.

Notez que, même s'il existe un chevauchement dans les deux types de résultats, il peut également y avoir des différences (par exemple, product_id32 et product_id93 dans la réponse).

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Go.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import (
	"context"
	"fmt"
	"io"
	"os"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProducts searches for products from a product set similar to products in an image file.
func getSimilarProducts(w io.Writer, projectID string, location string, productSetID string, productCategory string, file string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	f, err := os.Open(file)
	if err != nil {
		return fmt.Errorf("Open: %w", err)
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return fmt.Errorf("NewImageFromReader: %w", err)
	}

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Java.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * Search similar products to image in local file.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param filePath - Local file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws IOException - on I/O errors.
 */
public static void getSimilarProductsFile(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String filePath,
    String filter)
    throws IOException {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.format(projectId, computeRegion, productSetId);

    // Read the image as a stream of bytes.
    File imgPath = new File(filePath);
    byte[] content = Files.readAllBytes(imgPath.toPath());

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    // The input image can be a HTTPS link or Raw image bytes.
    // Example:
    // To use HTTP link replace with below code
    //  ImageSource source = ImageSource.newBuilder().setImageUri(imageUri).build();
    //  Image image = Image.newBuilder().setSource(source).build();
    Image image = Image.newBuilder().setContent(ByteString.copyFrom(content)).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Node.js.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
const fs = require('fs');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsFile() {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'nodejs-docs-samples';
  // const location = 'us-west1';
  // const productSetId = 'indexed_product_set_id_for_testing';
  // const productCategory = 'apparel';
  // const filePath = './resources/shoes_1.jpg';
  // const filter = '';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );
  const content = fs.readFileSync(filePath, 'base64');
  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {content: content},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  const results = response['responses'][0]['productSearchResults']['results'];
  console.log('\nSimilar product information:');
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsFile();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Python.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import vision

def get_similar_products_file(
    project_id,
    location,
    product_set_id,
    product_category,
    file_path,
    filter,
    max_results,
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        file_path: Local file path of the image to be searched.
        filter: Condition to be applied on the labels.
                Example for filter: (color = red OR color = blue) AND style = kids
                It will search on all products with the following labels:
                color:red AND style:kids
                color:blue AND style:kids
        max_results: The maximum number of results (matches) to return. If omitted, all results are returned.
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Read the image as a stream of bytes.
    with open(file_path, "rb") as image_file:
        content = image_file.read()

    # Create annotate image request along with product search feature.
    image = vision.Image(content=content)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(
        image, image_context=image_context, max_results=max_results
    )

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


Langages supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec Ruby.

Rechercher sur la base d'une image distante

Vous avez également la possibilité de rechercher des produits similaires à une image en spécifiant l'URI Cloud Storage de l'image.

REST

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • CLOUD_STORAGE_IMAGE_URI : chemin d'accès à un fichier image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://storage-bucket/filename.jpg
  • PROJECT_ID : ID de votre projet Google Cloud.
  • LOCATION_ID : identifiant d'emplacement valide. Les identifiants d'emplacement valides sont : us-west1, us-east1, europe-west1 et asia-east1.
  • PRODUCT_SET_ID : ID de l'ensemble de produits sur lequel vous souhaitez exécuter l'opération.

Remarque sur les champs :

  • features.maxResults : nombre maximal de résultats à afficher.
  • imageContext.productCategories : catégorie de produits dans laquelle effectuer la recherche. Actuellement, vous ne pouvez spécifier qu'une seule catégorie de produits : "homegoods" (articles de maison), "apparel" (vêtements), "toys" (jouets), "packaged goods" (biens de consommation courante) et "general" (général).
  • imageContext.filter (facultatif) - Expression (ou expressions multiples) de filtrage par clé-valeur pour le libellé de produit. Format : "key=value". Le filtrage des paires clé-valeur peut être lié aux expressions AND ou OR : "color=blue AND style=mens" ou "color=blue OR color=black ". Si vous utilisez l'expression OR, toutes les clés de l'expression doivent être identiques.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

La réponse JSON inclut les deux types de résultats suivants :

  • productSearchResults : contient une liste de produits correspondants pour l'image entière. Dans l'exemple de réponse, les produits correspondants sont : product_id65, product_id35, product_id34, product_id62, product_id32.
  • productGroupedResults : contient les coordonnées du cadre de délimitation et les éléments correspondants pour chaque produit identifié dans l'image. Dans la réponse suivante, un seul produit a été identifié, suivi des produits correspondants dans l'exemple d'ensemble de produits : product_id65, product_id35, product_id34, product_id93, product_id62.

Notez que, même s'il existe un chevauchement dans les deux types de résultats, il peut également y avoir des différences (par exemple, product_id32 et product_id93 dans la réponse).

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Go.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import (
	"context"
	"fmt"
	"io"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProductsURI searches for products from a product set similar to products in an image file on GCS.
func getSimilarProductsURI(w io.Writer, projectID string, location string, productSetID string, productCategory string, imageURI string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	image := vision.NewImageFromURI(imageURI)

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Java.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * Search similar products to image in Google Cloud Storage.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param gcsUri - GCS file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws Exception - on errors.
 */
public static void getSimilarProductsGcs(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String gcsUri,
    String filter)
    throws Exception {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.of(projectId, computeRegion, productSetId).toString();

    // Get the image from Google Cloud Storage
    ImageSource source = ImageSource.newBuilder().setGcsImageUri(gcsUri).build();

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    Image image = Image.newBuilder().setSource(source).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Node.js.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsGcs(
  projectId,
  location,
  productSetId,
  productCategory,
  filePath,
  filter
) {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'Your Google Cloud project Id';
  // const location = 'A compute region name';
  // const productSetId = 'Id of the product set';
  // const productCategory = 'Category of the product';
  // const filePath = 'Local file path of the image to be searched';
  // const filter = 'Condition to be applied on the labels';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );

  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {source: {gcsImageUri: filePath}},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  console.log(request.image);

  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  console.log('\nSimilar product information:');

  const results = response['responses'][0]['productSearchResults']['results'];
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsGcs();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la recherche de produits de l'API Vision, consultez la page Bibliothèques clientes de la recherche de produits de l'API Vision. Pour en savoir plus, consultez la documentation de référence sur les API de la recherche de produits de l'API Vision en langage Python.

Pour vous authentifier auprès de la recherche de produits de l'API Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import vision

def get_similar_products_uri(
    project_id, location, product_set_id, product_category, image_uri, filter
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        image_uri: Cloud Storage location of image to be searched.
        filter: Condition to be applied on the labels.
        Example for filter: (color = red OR color = blue) AND style = kids
        It will search on all products with the following labels:
        color:red AND style:kids
        color:blue AND style:kids
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Create annotate image request along with product search feature.
    image_source = vision.ImageSource(image_uri=image_uri)
    image = vision.Image(source=image_source)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(image, image_context=image_context)

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


Langages supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur la recherche de produits via l'API Vision avec Ruby.