A Vertex AI permite testar comandos usando o Vertex AI Studio no console do Google Cloud, a API Vertex AI e o SDK da Vertex AI para Python. Nesta página, mostramos como testar solicitações de texto usando qualquer uma dessas interfaces.
Para saber mais sobre o design de comandos para texto, consulte Criar comandos de texto.
Testar solicitações de texto
Para testar solicitações de texto, escolha um dos métodos a seguir.
REST
Para testar um prompt de texto usando a API Vertex AI, envie uma solicitação POST para o endpoint do modelo do editor.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- PROJECT_ID: o ID do projeto.
- PROMPT: um comando é uma solicitação de linguagem natural enviada a um modelo de linguagem para receber uma resposta. Os comandos podem conter perguntas, instruções, informações contextuais, exemplos e texto para que o modelo seja concluído ou continue. (Não adicione citações diretas ao redor deste comando.)
- TEMPERATURE:
a temperatura é usada para amostragem durante a geração da resposta, que ocorre quando
topP
etopK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token. Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
- MAX_OUTPUT_TOKENS:
número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.
Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
- TOP_P:
o Top-P muda a forma como o modelo seleciona tokens para saída. Os tokens são selecionados
do mais provável (veja o top-K) para o menos provável até que a soma das probabilidades
seja igual ao valor do top-P. Por exemplo, se os tokens A, B e C tiverem uma probabilidade de
0,3, 0,2 e 0,1 e o valor de top-P for
0.5
, o modelo selecionará A ou B como token seguinte usando temperatura e exclui C como candidato.Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
- TOP_K:
o Top-K muda a forma como o modelo seleciona tokens para saída. Um top-K de
1
significa que o próximo token selecionado é o mais provável entre todos os tokens no vocabulário do modelo (também chamado de decodificação gananciosa), enquanto um top-K de3
significa que o próximo token está selecionado entre os três tokens mais prováveis usando a temperatura.Para cada etapa da seleção de tokens, são amostrados os tokens top-K com as maiores probabilidades. Em seguida, os tokens são filtrados com base no valor de top-P com o token final selecionado por meio da amostragem de temperatura.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
Método HTTP e URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict
Corpo JSON da solicitação:
{ "instances": [ { "prompt": "PROMPT"} ], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K } }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Exemplo de comando text-bison curl
MODEL_ID="text-bison"
PROJECT_ID=PROJECT_ID
curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
$'{
"instances": [
{ "prompt": "Give me ten interview questions for the role of program manager." }
],
"parameters": {
"temperature": 0.2,
"maxOutputTokens": 256,
"topK": 40,
"topP": 0.95
}
}'
Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.
Go
Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Java
Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Node.js
Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
C#
Antes de testar esse exemplo, siga as instruções de configuração para C# no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para C#.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Ruby
Antes de testar esse exemplo, siga as instruções de configuração para Ruby no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Ruby.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Console
Para testar um comando de texto usando o Vertex AI Studio no console do Google Cloud, siga estas etapas:
- Na seção "Vertex AI" do console do Google Cloud, acesse a página do Vertex AI Studio.
- Clique na guia Primeiros passos.
- Clique no Comando de texto.
Selecione o método para inserir o comando:
- O formato livre é recomendado para comandos de imagem zero ou de copiar e colar de comandos de poucas imagens.
- Estruturado é recomendado para projetar comandos few-shot no Vertex AI Studio.
Formato livre
Digite o comando no campo de texto Comando.
Estruturado
O método estruturado para inserir comandos separa os componentes de um prompt em diferentes campos:
- Contexto: insira instruções para a tarefa que você quer que o modelo execute e inclua informações contextuais para o modelo para referência.
- Exemplos: para comandos de poucas imagens, adicione exemplos de entrada e saída que exibam os padrões comportamentais para o modelo imitado. Adicionar um prefixo ao exemplo de entrada e saída é opcional. Se você optar por adicionar prefixos, eles deverão ser consistentes em todos os exemplos.
- Teste: no campo Entrada, insira a entrada do comando para a qual você quer receber uma resposta. Adicionar um prefixo à entrada e saída de teste é opcional. Se os exemplos tiverem prefixos, o teste precisará ter os mesmos prefixos.
Configure o modelo e os parâmetros:
- Model: selecione um modelo
text-bison
ougemini-1.0-pro
. Temperatura: use o controle deslizante ou a caixa de texto para inserir um valor para a temperatura.
A temperatura é usada para amostragem durante a geração da resposta, que ocorre quandotopP
etopK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token. Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
Limite de token: use o controle deslizante ou a caixa de texto para inserir um valor para o limite de saída máximo.
Número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
Top-K: use o controle deslizante ou a caixa de texto para inserir um valor para "top-K".
O top-k muda a forma como o modelo seleciona tokens para saída. Um top-K de1
significa que o próximo token selecionado é o mais provável entre todos os tokens no vocabulário do modelo (também chamado de decodificação gananciosa), enquanto um top-K de3
significa que o próximo token está selecionado entre os três tokens mais prováveis usando a temperatura.Para cada etapa da seleção de tokens, são amostrados os tokens top-K com as maiores probabilidades. Em seguida, os tokens são filtrados com base no valor de top-P com o token final selecionado por meio da amostragem de temperatura.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
- Top-P: use o controle deslizante ou a caixa de texto para inserir um valor para essa parte.
Os tokens são selecionados do mais provável para o menos até que a soma das probabilidades seja igual ao valor do top-P. Para ter menos resultados de variáveis,
defina top-P como
0
.
- Model: selecione um modelo
- Clique em Enviar.
- Opcional: para salvar a solicitação em Minhas solicitações, clique em Salvar.
- Opcional: para receber o código Python ou um comando curl para seu prompt, clique em Ver código.
Resposta de stream do modelo de texto
Para conferir exemplos de solicitações de código e respostas usando a API REST, consulte Exemplos usando a API REST.
Para ver exemplos de solicitações de código e respostas usando o SDK da Vertex AI para Python, consulte Exemplos que usam o SDK da Vertex AI para Python.
A seguir
- Saiba como enviar solicitações de prompt de chat do Gemini.
- Saiba como testar comandos de chat.
- Saiba como ajustar um modelo de fundação.
- Saiba mais sobre as práticas recomendadas de IA responsável e os filtros de segurança da Vertex AI.