RAG Engine API

The Vertex AI RAG Engine is a component of the Vertex AI platform, which facilitates Retrieval-Augmented Generation (RAG). RAG Engine enables Large Language Models (LLMs) to access and incorporate data from external knowledge sources, such as documents and databases. By using RAG, LLMs can generate more accurate and informative LLM responses.

Example syntax

This section provides syntax to create a RAG corpus.

curl

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora\
  -d '{
  "display_name" : "...",
  "description": "...",
  "rag_embedding_model_config": {
    "vertex_prediction_endpoint": {
      "endpoint": "..."
    }
  }
}'

Python

corpus = rag.create_corpus(display_name=..., description=...)
print(corpus)

Parameters list

This section lists the following:

Parameters Examples
See Corpus management parameters. See Corpus management examples.
See File management parameters. See File management examples.

Corpus management parameters

For information about a RAG corpus, see Corpus management.

Create a RAG corpus

This table lists the parameters used to create a RAG corpus.

Parameters

display_name

Optional: string

The display name of the RAG corpus.

description

Optional: string

The description of the RAG corpus.

rag_embedding_model_config.vertex_prediction_endpoint.endpoint

Optional: string

The embedding model to use for the RAG corpus.

rag_vector_db_config.weaviate.http_endpoint

Optional: string

The Weaviate instance's HTTPS or HTTP endpoint.

rag_vector_db_config.weaviate.collection_name

Optional: string

The Weaviate collection that the RAG corpus maps to.

rag_vector_db_config.vertex_feature_store.feature_view_resource_name

Optional: string

The Vertex AI Feature Store FeatureView that the RAG corpus maps to.

Format: projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}

api_auth.api_key_config.api_key_secret_version

Optional: string

The Secret Manager secret version resource name that stores the API key.

Format: projects/{project}/secrets/{secret}/versions/{version}

rag_vector_db_config.pinecone

string

This field helps you to set the choice of a vector database that you would like to associate with your RAG corpus, and it must be set during the CreateRagCorpus API call. If it isn't set, then the default vector database choice `RagManagedDb` is assigned to your RAG corpus.

rag_vector_db_config.pinecone.index_name

string

This is the name used to create the Pinecone index that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

rag_vector_db_config.api_auth.api_key_config.api_key_secret_version

string

This the full resource name of the secret that is stored in Secret Manager, which contains your Pinecone API key. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API. Until you specify this field, you can't import data into the RAG corpus.

Format:
projects/{PROJECT_NUMBER}/secrets/{SECRET_ID}/versions/{VERSION_ID}

rag_vector_db_config.vertex_vector_search

string

This field helps you to set the choice of a vector database that you would like to associate with your RAG corpus, and it must be set during the CreateRagCorpus API call. If it isn't set, then the default vector database choice RagManagedDb is assigned to your RAG corpus.

rag_vector_db_config.vertex_vector_search.index

string

This is the resource name of the Vector Search that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

rag_vector_db_config.vertex_vector_search.index_endpoint

string

This is the resource name of the Vector Search index endpoint that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

Update a RAG corpus

This table lists the parameters used to update a RAG corpus.

Name Description
display_name Optional: string
The display name of the RAG corpus.
description Optional: string
The display of the RAG corpus.
rag_vector_db_config.weaviate.http_endpoint Optional: string
The Weaviate instance's HTTPS or HTTP endpoint.
rag_vector_db_config.weaviate.collection_name Optional: string
The Weaviate collection that the RAG corpus maps to.
rag_vector_db_config.vertex_feature_store.feature_view_resource_name Optional: string
The Vertex AI Feature Store featureview that the RAG corpus maps to.
Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}
api_auth.api_key_config.api_key_secret_version Optional: string
The Secret Manager secret version resource name that stores the API key.
Format:
projects/{project}/secrets/{secret}/versions/{version}

rag_vector_db_config.pinecone

string

This field helps you to set the choice of a vector database that you would like to associate with your RAG corpus, and it must be set during the CreateRagCorpus API call. If it isn't set, then the default vector database choice RagManagedDb is assigned to your RAG corpus.

rag_vector_db_config.pinecone.index_name

string

This is the name used to create the Pinecone index that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

rag_vector_db_config.api_auth.api_key_config.api_key_secret_version

string

This the full resource name of the secret that is stored in Secret Manager, which contains your Pinecone API key. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API. Until you specify this field, you can't import data into the RAG corpus.

Format:
projects/{PROJECT_NUMBER}/secrets/{SECRET_ID}/versions/{VERSION_ID}

rag_vector_db_config.vertex_vector_search

string

This field helps you to set the choice of a vector database that you would like to associate with your RAG corpus, and it must be set during the CreateRagCorpus API call. If it isn't set, then the default vector database choice RagManagedDb is assigned to your RAG corpus.

rag_vector_db_config.vertex_vector_search.index

string

This is the resource name of the Vector Search that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

rag_vector_db_config.vertex_vector_search.index_endpoint

string

This is the resource name of the Vector Search index endpoint that's used with the RAG corpus. You can set the name during the CreateRagCorpus call, or you can specify the name when you call the UpdateRagCorpus API.

List RAG corpora

This table lists the parameters used to list RAG corpora.

Parameters

page_size

Optional: int

The standard list page size.

page_token

Optional: string

The standard list page token. Typically obtained from [ListRagCorporaResponse.next_page_token][] of the previous [VertexRagDataService.ListRagCorpora][] call.

Get a RAG corpus

This table lists parameters used to get a RAG corpus.

Parameters

rag_corpus_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

Delete a RAG corpus

This table lists parameters used to delete a RAG corpus.

Parameters

rag_corpus_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

File management parameters

For information about a RAG file, see File management.

Upload a RAG file

This table lists parameters used to upload a RAG file.

Parameters

rag_corpus_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

display_name

Optional: string

The display name of the RagCorpus.

description

Optional: string

The description of the RagCorpus.

Import RAG files

This table lists parameters used to import a RAG file.

Parameters

rag_corpus_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

gcs_source.uris

list

Cloud Storage URI that contains the upload file.

google_drive_source.resource_id

Optional: string

The type of the Google Drive resource.

google_drive_source.resource_ids.resource_type

Optional: string

The ID of the Google Drive resource.

rag_file_chunking_config.chunk_size

Optional: int

Number of tokens each chunk should have.

rag_file_chunking_config.chunk_overlap

Optional: int

Number of tokens overlap between two chunks.

max_embedding_requests_per_min

Optional: int

Number that represents a limit to restrict the rate at which RAG Engine calls the embedding model during the indexing process. Default limit is 1000. For more information about rate limits, see RAG Engine quotas.

rag_corpus_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

page_size

Optional: int

The standard list page size.

page_token

Optional: string

The standard list page token. Typically obtained from [ListRagCorporaResponse.next_page_token][] of the previous [VertexRagDataService.ListRagCorpora][]< call.

Get a RAG file

This table lists parameters used to get a RAG file.

Parameters

rag_file_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_file_id}

Delete a RAG file

This table lists parameters used to delete a RAG file.

Parameters

rag_file_id

string

The ID of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_file_id}

Retrieval and prediction

This section lists the retrieval and prediction parameters.

Retrieval parameters

This table lists retrieval parameters.

Parameter Description
similarity_top_k Controls the maximum number of contexts that are retrieved.
vector_distance_threshold Only contexts with a distance smaller than the threshold are considered.

Prediction parameters

This table lists prediction parameters.

Parameters

model_id

string

LLM model for content generation.

rag_corpora

string

The name of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}

text

string (list)

The text to LLM for content generation. Maximum value: 1 list.

vector_distance_threshold

Optional: double

Only contexts with a vector distance smaller than the threshold are returned.

similarity_top_k

Optional: int

The number of top contexts to retrieve.

Corpus management examples

This section provides examples of how to use the API to manage your RAG corpus.

Create a RAG corpus example

This code sample demonstrates how to create a RAG corpus.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • CORPUS_DISPLAY_NAME: The display name of the RagCorpus.
  • CORPUS_DESCRIPTION: The description of the RagCorpus.
  • RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT: The embedding model of the RagCorpus.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora

Request JSON body:

{
  "display_name" : "CORPUS_DISPLAY_NAME",
  "description": "CORPUS_DESCRIPTION",
  "rag_embedding_model_config_endpoint": "RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT"
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora" | Select-Object -Expand Content
You should receive a successful status code (2xx).

The following example demonstrates how to create a RAG corpus by using the REST API.

    // Either your first party publisher model or fine-tuned endpoint
    // Example: projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/textembedding-gecko@003
    // or
    // Example: projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/12345
    ENDPOINT_NAME=${RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT}

    // Corpus display name
    // Such as "my_test_corpus"
    CORPUS_DISPLAY_NAME=YOUR_CORPUS_DISPLAY_NAME

    // CreateRagCorpus
    // Input: ENDPOINT, PROJECT_ID, CORPUS_DISPLAY_NAME
    // Output: CreateRagCorpusOperationMetadata
    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora \
    -d '{
          "display_name" : '\""${CORPUS_DISPLAY_NAME}"\"',
          "rag_embedding_model_config" : {
                  "vertex_prediction_endpoint": {
                        "endpoint": '\""${ENDPOINT_NAME}"\"'
                  }
          }
      }'

    // Poll the operation status.
    // The last component of the RagCorpus "name" field is the server-generated
    // rag_corpus_id: (only Bold part)
    // projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/7454583283205013504.
    OPERATION_ID=OPERATION_ID
    poll_op_wait ${OPERATION_ID}

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Configure embedding model
embedding_model_config = rag.EmbeddingModelConfig(
    publisher_model="publishers/google/models/text-embedding-004"
)

corpus = rag.create_corpus(
    display_name=display_name,
    description=description,
    embedding_model_config=embedding_model_config,
)
print(corpus)
# Example response:
# RagCorpus(name='projects/1234567890/locations/us-central1/ragCorpora/1234567890',
# display_name='test_corpus', description='Corpus Description', embedding_model_config=...
# ...

Update a RAG corpus example

You can update your RAG corpus with a new display name, description, and vector database configuration. However, you can't change the following parameters in your RAG corpus:

  • The vector database type. For example, you can't change the vector database from Weaviate to Vertex AI Feature Store.
  • If you're using the managed database option, you can't update the vector database configuration.

These examples demonstrate how to update a RAG corpus.

Python

To learn how to install or update the Vertex AI SDK, see Install the Vertex AI SDK. For more information, see the Python API reference documentation.

from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment on the following lines:
# PROJECT_ID = "YOUR_PROJECT_ID"
# corpus_name = "YOUR_CORPUS_NAME"
#  e.g. "projects/1234567890/locations/us-central1/ragCorpora/1234567890'"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

corpus = rag.update_corpus(
    corpus_name=corpus_name,
    display_name=display_name,
    description=description,
)
print(corpus)

REST

Before using any of the request data, make the following replacements:

PROJECT_ID: Your project ID.
LOCATION: The region to process the request.
CORPUS_ID: The corpus ID of your RAG corpus.
CORPUS_DISPLAY_NAME: The display name of the RAG corpus.
CORPUS_DESCRIPTION: The description of the RAG corpus.

HTTP method and URL:

PATCH https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${CORPUS_ID}

Request JSON body:

{
  "display_name" : ${CORPUS_DISPLAY_NAME},
  "description": ${CORPUS_DESCRIPTION}
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

  curl -X PATH \
      -H "Content-Type: application/json; charset=utf-8" \
      -d @request.json \   "https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${CORPUS_ID}"
  ```

* { Powershell }

Save the request body in a file named request.json, and execute the following command:

```sh
  $headers = @{  }

  Invoke-WebRequest `
    -Method PATCH `
    -Headers $headers `
    -ContentType: "application/json; charset=utf-8" `
    -InFile request.json `
    -Uri "https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${CORPUS_ID}
  " | Select-Object -Expand Content
  ```

List RAG corpora example

This code sample demonstrates how to list all of the RAG corpora.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • PAGE_SIZE: The standard list page size. You may adjust the number of RagCorpora to return per page by updating the page_size parameter.
  • PAGE_TOKEN: The standard list page token. Obtained typically using ListRagCorporaResponse.next_page_token of the previous VertexRagDataService.ListRagCorpora call.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN

To send your request, choose one of these options:

curl

Execute the following command:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
You should receive a successful status code (`2xx`) and a list of RagCorpora under the given PROJECT_ID.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

corpora = rag.list_corpora()
print(corpora)
# Example response:
# ListRagCorporaPager<rag_corpora {
#   name: "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/2305843009213693952"
#   display_name: "test_corpus"
#   create_time {
# ...

Get a RAG corpus example

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID

To send your request, choose one of these options:

curl

Execute the following command:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
A successful response returns the RagCorpus resource.

The get and list commands are used in an example to demonstrate how RagCorpus uses the rag_embedding_model_config field, which points to the embedding model you have chosen.

// Server-generated rag_corpus_id in CreateRagCorpus
RAG_CORPUS_ID=RAG_CORPUS_ID

// GetRagCorpus
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID
// Output: RagCorpus
curl -X GET \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}

// ListRagCorpora
curl -sS -X GET \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora"

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

corpus = rag.get_corpus(name=corpus_name)
print(corpus)
# Example response:
# RagCorpus(name='projects/[PROJECT_ID]/locations/us-central1/ragCorpora/1234567890',
# display_name='test_corpus', description='Corpus Description',
# ...

Delete a RAG corpus example

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.

HTTP method and URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID

To send your request, choose one of these options:

curl

Execute the following command:

curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
A successful response returns the DeleteOperationMetadata.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag.delete_corpus(name=corpus_name)
print(f"Corpus {corpus_name} deleted.")
# Example response:
# Successfully deleted the RagCorpus.
# Corpus projects/[PROJECT_ID]/locations/us-central1/ragCorpora/123456789012345 deleted.

File management examples

This section provides examples of how to use the API to manage RAG files.

Upload a RAG file example

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.
  • INPUT_FILE: The path of a local file.
  • FILE_DISPLAY_NAME: The display name of the RagFile.
  • RAG_FILE_DESCRIPTION: The description of the RagFile.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload

Request JSON body:

{
 "rag_file": {
  "display_name": "FILE_DISPLAY_NAME",
  "description": "RAG_FILE_DESCRIPTION"
 }
}

To send your request, choose one of these options:

curl

Save the request body in a file named INPUT_FILE, and execute the following command:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @INPUT_FILE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload"

PowerShell

Save the request body in a file named INPUT_FILE, and execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile INPUT_FILE `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload" | Select-Object -Expand Content
A successful response returns the RagFile resource. The last component of the RagFile.name field is the server-generated rag_file_id.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# path = "path/to/local/file.txt"
# display_name = "file_display_name"
# description = "file description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag_file = rag.upload_file(
    corpus_name=corpus_name,
    path=path,
    display_name=display_name,
    description=description,
)
print(rag_file)
# RagFile(name='projects/[PROJECT_ID]/locations/us-central1/ragCorpora/1234567890/ragFiles/09876543',
#  display_name='file_display_name', description='file description')

Import RAG files example

Files and folders can be imported from Drive or Cloud Storage. You can use response.metadata to view partial failures, request time, and response time in the SDK's response object.

The response.skipped_rag_files_count refers to the number of files that were skipped during import. A file is skipped when the following conditions are met:

  1. The file has already been imported.
  2. The file hasn't changed.
  3. The chunking configuration for the file hasn't changed.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.
  • GCS_URIS: A list of Cloud Storage locations. Example: gs://my-bucket1, gs://my-bucket2.
  • DRIVE_RESOURCE_ID: The ID of the Drive resource. Examples:
    • https://drive.google.com/file/d/ABCDE
    • https://drive.google.com/corp/drive/u/0/folders/ABCDEFG
  • DRIVE_RESOURCE_TYPE: Type of the Drive resource. Options:
    • RESOURCE_TYPE_FILE - File
    • RESOURCE_TYPE_FOLDER - Folder
  • CHUNK_SIZE: Optional: Number of tokens each chunk should have.
  • CHUNK_OVERLAP: Optional: Number of tokens overlap between chunks.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import

Request JSON body:

{
  "import_rag_files_config": {
    "gcs_source": {
      "uris": GCS_URIS
    },
    "google_drive_source": {
      "resource_ids": {
        "resource_id": DRIVE_RESOURCE_ID,
        "resource_type": DRIVE_RESOURCE_TYPE
      },
    }
  }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import" | Select-Object -Expand Content
A successful response returns the ImportRagFilesOperationMetadata resource.

The following sample demonstrates how to import a file from Cloud Storage. Use the max_embedding_requests_per_min control field to limit the rate at which RAG Engine calls the embedding model during the ImportRagFiles indexing process. The field has a default value of 1000 calls per minute.

// Cloud Storage bucket/file location.
// Such as "gs://rag-e2e-test/"
GCS_URIS=YOUR_GCS_LOCATION

// Enter the QPM rate to limit RAG's access to your embedding model
// Example: 1000
EMBEDDING_MODEL_QPM_RATE=MAX_EMBEDDING_REQUESTS_PER_MIN_LIMIT

// ImportRagFiles
// Import a single Cloud Storage file or all files in a Cloud Storage bucket.
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID, GCS_URIS
// Output: ImportRagFilesOperationMetadataNumber
// Use ListRagFiles to find the server-generated rag_file_id.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}/ragFiles:import \
-d '{
  "import_rag_files_config": {
    "gcs_source": {
      "uris": '\""${GCS_URIS}"\"'
    },
    "rag_file_chunking_config": {
      "chunk_size": 512
    },
    "max_embedding_requests_per_min": '"${EMBEDDING_MODEL_QPM_RATE}"'
  }
}'

// Poll the operation status.
// The response contains the number of files imported.
OPERATION_ID=OPERATION_ID
poll_op_wait ${OPERATION_ID}

The following sample demonstrates how to import a file from Drive. Use the max_embedding_requests_per_min control field to limit the rate at which RAG Engine calls the embedding model during the ImportRagFiles indexing process. The field has a default value of 1000 calls per minute.

// Google Drive folder location.
FOLDER_RESOURCE_ID=YOUR_GOOGLE_DRIVE_FOLDER_RESOURCE_ID

// Enter the QPM rate to limit RAG's access to your embedding model
// Example: 1000
EMBEDDING_MODEL_QPM_RATE=MAX_EMBEDDING_REQUESTS_PER_MIN_LIMIT

// ImportRagFiles
// Import all files in a Google Drive folder.
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID, FOLDER_RESOURCE_ID
// Output: ImportRagFilesOperationMetadataNumber
// Use ListRagFiles to find the server-generated rag_file_id.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}/ragFiles:import \
-d '{
  "import_rag_files_config": {
    "google_drive_source": {
      "resource_ids": {
        "resource_id": '\""${FOLDER_RESOURCE_ID}"\"',
        "resource_type": "RESOURCE_TYPE_FOLDER"
      }
    },
    "max_embedding_requests_per_min": '"${EMBEDDING_MODEL_QPM_RATE}"'
  }
}'

// Poll the operation status.
// The response contains the number of files imported.
OPERATION_ID=OPERATION_ID
poll_op_wait ${OPERATION_ID}

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# paths = ["https://drive.google.com/file/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.import_files(
    corpus_name=corpus_name,
    paths=paths,
    chunk_size=512,  # Optional
    chunk_overlap=100,  # Optional
    max_embedding_requests_per_min=900,  # Optional
)
print(f"Imported {response.imported_rag_files_count} files.")
# Example response:
# Imported 2 files.

Get a RAG file example

This code sample demonstrates how to get a RAG file.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.
  • RAG_FILE_ID: The ID of the RagFile resource.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID

To send your request, choose one of these options:

curl

Execute the following command:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
A successful response returns the RagFile resource.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# file_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag_file = rag.get_file(name=file_name)
print(rag_file)
# Example response:
# RagFile(name='projects/1234567890/locations/us-central1/ragCorpora/11111111111/ragFiles/22222222222',
# display_name='file_display_name', description='file description')

List RAG files example

This code sample demonstrates how to list RAG files.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.
  • PAGE_SIZE: The standard list page size. You may adjust the number of RagFiles to return per page by updating the page_size parameter.
  • PAGE_TOKEN: The standard list page token. Obtained typically using ListRagFilesResponse.next_page_token of the previous VertexRagDataService.ListRagFiles call.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN

To send your request, choose one of these options:

curl

Execute the following command:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
You should receive a successful status code (2xx) along with a list of RagFiles under the given RAG_CORPUS_ID.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

files = rag.list_files(corpus_name=corpus_name)
for file in files:
    print(file.display_name)
    print(file.name)
# Example response:
# g-drive_file.txt
# projects/1234567890/locations/us-central1/ragCorpora/111111111111/ragFiles/222222222222
# g_cloud_file.txt
# projects/1234567890/locations/us-central1/ragCorpora/111111111111/ragFiles/333333333333

Delete a RAG file example

This code sample demonstrates how to delete a RAG file.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • RAG_CORPUS_ID: The ID of the RagCorpus resource.
  • RAG_FILE_ID: The ID of the RagFile resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file_id}.

HTTP method and URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID

To send your request, choose one of these options:

curl

Execute the following command:

curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"

PowerShell

Execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
A successful response returns the DeleteOperationMetadata resource.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# file_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag.delete_file(name=file_name)
print(f"File {file_name} deleted.")
# Example response:
# Successfully deleted the RagFile.
# File projects/1234567890/locations/us-central1/ragCorpora/1111111111/ragFiles/2222222222 deleted.

Retrieval query

When a user asks a question or provides a prompt, the retrieval component in RAG searches through its knowledge base to find information that is relevant to the query.

REST

Before using any of the request data, make the following replacements:

  • LOCATION: The region to process the request.
  • PROJECT_ID: Your project ID.
  • RAG_CORPUS_RESOURCE: The name of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}.
  • VECTOR_DISTANCE_THRESHOLD: Only contexts with a vector distance smaller than the threshold are returned.
  • TEXT: The query text to get relevant contexts.
  • SIMILARITY_TOP_K: The number of top contexts to retrieve.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts

Request JSON body:

{
 "vertex_rag_store": {
    "rag_resources": {
      "rag_corpus": "RAG_CORPUS_RESOURCE",
    },
    "vector_distance_threshold": 0.8
  },
  "query": {
   "text": "TEXT",
   "similarity_top_k": SIMILARITY_TOP_K
  }
 }

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts" | Select-Object -Expand Content
You should receive a successful status code (2xx) and a list of related RagFiles.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=corpus_name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="Hello World!",
    similarity_top_k=10,  # Optional
    vector_distance_threshold=0.5,  # Optional
)
print(response)
# Example response:
# contexts {
#   contexts {
#     source_uri: "gs://your-bucket-name/file.txt"
#     text: "....
#   ....

Prediction

The prediction generates a grounded response using the retrieved contexts.

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • LOCATION: The region to process the request.
  • MODEL_ID: LLM model for content generation. Example: gemini-1.5-pro-002
  • GENERATION_METHOD: LLM method for content generation. Options: generateContent, streamGenerateContent
  • INPUT_PROMPT: The text sent to the LLM for content generation. Try to use a prompt relevant to the uploaded rag Files.
  • RAG_CORPUS_RESOURCE: The name of the RagCorpus resource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}.
  • SIMILARITY_TOP_K: Optional: The number of top contexts to retrieve.
  • VECTOR_DISTANCE_THRESHOLD: Optional: Contexts with a vector distance smaller than the threshold are returned.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD

Request JSON body:

{
 "contents": {
  "role": "user",
  "parts": {
    "text": "INPUT_PROMPT"
  }
 },
 "tools": {
  "retrieval": {
   "disable_attribution": false,
   "vertex_rag_store": {
    "rag_resources": {
      "rag_corpus": "RAG_CORPUS_RESOURCE",
    },
    "similarity_top_k": SIMILARITY_TOP_K,
    "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD
   }
  }
 }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD" | Select-Object -Expand Content
A successful response returns the generated content with citations.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.


from vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=corpus_name,
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            similarity_top_k=3,  # Optional
            vector_distance_threshold=0.5,  # Optional
        ),
    )
)

rag_model = GenerativeModel(
    model_name="gemini-1.5-flash-001", tools=[rag_retrieval_tool]
)
response = rag_model.generate_content("Why is the sky blue?")
print(response.text)
# Example response:
#   The sky appears blue due to a phenomenon called Rayleigh scattering.
#   Sunlight, which contains all colors of the rainbow, is scattered
#   by the tiny particles in the Earth's atmosphere....
#   ...

What's next