Obtener predicciones por lotes para Gemini

Las predicciones por lotes te permiten enviar un gran número de peticiones multimodales en una sola solicitud por lotes.

Para obtener más información sobre el flujo de trabajo por lotes y cómo dar formato a los datos de entrada, consulta el artículo Obtener predicciones por lotes para Gemini.

Modelos admitidos

Sintaxis de ejemplo

En el siguiente ejemplo se muestra cómo enviar una solicitud a la API Batch Prediction mediante el comando curl. Este ejemplo es específico del almacenamiento de BigQuery.

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/batchPredictionJobs \
  -d '{
      "displayName": "...",
      "model": "publishers/google/models/${MODEL_ID}",
      "inputConfig": {
        "instancesFormat": "bigquery",
        "bigquerySource": {
          "inputUri" : "..."
        }
      },
      "outputConfig": {
        "predictionsFormat": "bigquery",
        "bigqueryDestination": {
          "outputUri": "..."
        }
      }
  }'

Parámetros

Consulta los ejemplos para obtener más información sobre la implementación.

Cuerpo de la solicitud

Parámetros

displayName

El nombre que elijas para el trabajo.

model

Modelo que se usará para la predicción por lotes.

inputConfig

El formato de los datos. En el caso de la predicción por lotes de Gemini, se admiten las fuentes de entrada de Cloud Storage y BigQuery.

outputConfig

La configuración de salida que determina la ubicación de la salida del modelo. Se admiten ubicaciones de salida de Cloud Storage y BigQuery.

inputConfig

Parámetros

instancesFormat

El formato de entrada de la petición. Usa jsonl para Cloud Storage o bigquery para BigQuery.

gcsSource.uris

URI de la fuente de entrada. Se trata de una ubicación de Cloud Storage del archivo JSONL con el formato gs://bucketname/path/to/file.jsonl.

bigquerySource.inputUri

URI de la fuente de entrada. Se trata de un URI de tabla de BigQuery con el formato bq://project_id.dataset.table. La región del conjunto de datos de BigQuery de entrada debe ser la misma que la del trabajo de predicción por lotes de Vertex AI.

outputConfig

Parámetros

predictionsFormat

El formato de salida de la predicción. Usa el valor bigquery.

gcsDestination.outputUriPrefix

Ubicación del segmento y del directorio de Cloud Storage, con el formato gs://mybucket/path/to/output.

bigqueryDestination.outputUri

URI de BigQuery de la tabla de salida de destino, en formato bq://project_id.dataset.table. Si la tabla no existe, se creará. La región del conjunto de datos de BigQuery de salida debe ser la misma que la del trabajo de predicción por lotes de Vertex AI.

Ejemplos

Solicitar una respuesta por lotes

Las solicitudes por lotes de modelos multimodales aceptan fuentes de almacenamiento de Cloud Storage y BigQuery. Para obtener más información, consulta lo siguiente:

En función del número de elementos de entrada que hayas enviado, una tarea de generación por lotes puede tardar un tiempo en completarse.

REST

Para crear una tarea de predicción por lotes, usa el método projects.locations.batchPredictionJobs.create.

Entrada de Cloud Storage

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION: una región que admita modelos de Gemini.
  • PROJECT_ID: tu ID de proyecto.
  • MODEL_PATH: el nombre del modelo de editor, por ejemplo, publishers/google/models/gemini-2.5-flash; o el nombre del endpoint ajustado, por ejemplo, projects/PROJECT_ID/locations/LOCATION/models/MODEL_ID, donde MODEL_ID es el ID del modelo ajustado.
  • INPUT_URI: la ubicación de Cloud Storage de la entrada de predicción por lotes JSONL, como gs://bucketname/path/to/file.jsonl.
  • OUTPUT_FORMAT: para enviar la salida a un segmento de Cloud Storage, especifica jsonl.
  • DESTINATION: en BigQuery, especifica bigqueryDestination. En el caso de Cloud Storage, especifica gcsDestination.
  • OUTPUT_URI_FIELD_NAME: En BigQuery, especifica outputUri. En el caso de Cloud Storage, especifica outputUriPrefix.
  • OUTPUT_URI: en BigQuery, especifica la ubicación de la tabla, como bq://myproject.mydataset.output_result. La región del conjunto de datos de BigQuery de salida debe ser la misma que la del trabajo de predicción por lotes de Vertex AI. En Cloud Storage, especifica la ubicación del segmento y del directorio, como gs://mybucket/path/to/output.

Cuerpo JSON de la solicitud:

{
  "displayName": "my-cloud-storage-batch-prediction-job",
  "model": "MODEL_PATH",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

Deberías recibir una respuesta JSON similar a la siguiente.

Entrada de BigQuery

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION: una región que admita modelos de Gemini.
  • PROJECT_ID: tu ID de proyecto.
  • MODEL_PATH: el nombre del modelo de editor, por ejemplo, publishers/google/models/gemini-2.0-flash-001; o el nombre del endpoint ajustado, por ejemplo, projects/PROJECT_ID/locations/LOCATION/models/MODEL_ID, donde MODEL_ID es el ID del modelo ajustado.
  • INPUT_URI: la tabla de BigQuery en la que se encuentra la entrada de la predicción por lotes, como bq://myproject.mydataset.input_table. El conjunto de datos debe estar ubicado en la misma región que el trabajo de predicción por lotes. No se admiten los conjuntos de datos multirregionales.
  • OUTPUT_FORMAT: para enviar los datos a una tabla de BigQuery, especifica bigquery. Para enviar los datos a un segmento de Cloud Storage, especifica jsonl.
  • DESTINATION: en BigQuery, especifica bigqueryDestination. En el caso de Cloud Storage, especifica gcsDestination.
  • OUTPUT_URI_FIELD_NAME: En BigQuery, especifica outputUri. En el caso de Cloud Storage, especifica outputUriPrefix.
  • OUTPUT_URI: en BigQuery, especifica la ubicación de la tabla, como bq://myproject.mydataset.output_result. La región del conjunto de datos de BigQuery de salida debe ser la misma que la del trabajo de predicción por lotes de Vertex AI. En Cloud Storage, especifica la ubicación del segmento y del directorio, como gs://mybucket/path/to/output.

Cuerpo JSON de la solicitud:

{
  "displayName": "my-bigquery-batch-prediction-job",
  "model": "MODEL_PATH",
  "inputConfig": {
    "instancesFormat": "bigquery",
    "bigquerySource":{
      "inputUri" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

Deberías recibir una respuesta JSON similar a la siguiente.

La respuesta incluye un identificador único del trabajo por lotes. Puedes sondear el estado de la tarea por lotes con BATCH_JOB_ID. Para obtener más información, consulta Monitorizar el estado de los trabajos. Nota: No se admiten los informes de cuentas de servicio personalizadas, progreso en tiempo real, CMEK ni VPCSC.

Python

Instalar

pip install --upgrade google-genai

Para obtener más información, consulta la documentación de referencia del SDK.

Define variables de entorno para usar el SDK de IA generativa con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

Entrada de Cloud Storage

import time

from google import genai
from google.genai.types import CreateBatchJobConfig, JobState, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
# TODO(developer): Update and un-comment below line
# output_uri = "gs://your-bucket/your-prefix"

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.batches.Batches.create
job = client.batches.create(
    # To use a tuned model, set the model param to your tuned model using the following format:
    # model="projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
    model="gemini-2.5-flash",
    # Source link: https://storage.cloud.google.com/cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl
    src="gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl",
    config=CreateBatchJobConfig(dest=output_uri),
)
print(f"Job name: {job.name}")
print(f"Job state: {job.state}")
# Example response:
# Job name: projects/%PROJECT_ID%/locations/us-central1/batchPredictionJobs/9876453210000000000
# Job state: JOB_STATE_PENDING

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.BatchJob
completed_states = {
    JobState.JOB_STATE_SUCCEEDED,
    JobState.JOB_STATE_FAILED,
    JobState.JOB_STATE_CANCELLED,
    JobState.JOB_STATE_PAUSED,
}

while job.state not in completed_states:
    time.sleep(30)
    job = client.batches.get(name=job.name)
    print(f"Job state: {job.state}")
# Example response:
# Job state: JOB_STATE_PENDING
# Job state: JOB_STATE_RUNNING
# Job state: JOB_STATE_RUNNING
# ...
# Job state: JOB_STATE_SUCCEEDED

Entrada de BigQuery

import time

from google import genai
from google.genai.types import CreateBatchJobConfig, JobState, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))

# TODO(developer): Update and un-comment below line
# output_uri = f"bq://your-project.your_dataset.your_table"

job = client.batches.create(
    # To use a tuned model, set the model param to your tuned model using the following format:
    # model="projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
    model="gemini-2.5-flash",
    src="bq://storage-samples.generative_ai.batch_requests_for_multimodal_input",
    config=CreateBatchJobConfig(dest=output_uri),
)
print(f"Job name: {job.name}")
print(f"Job state: {job.state}")
# Example response:
# Job name: projects/%PROJECT_ID%/locations/us-central1/batchPredictionJobs/9876453210000000000
# Job state: JOB_STATE_PENDING

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.BatchJob
completed_states = {
    JobState.JOB_STATE_SUCCEEDED,
    JobState.JOB_STATE_FAILED,
    JobState.JOB_STATE_CANCELLED,
    JobState.JOB_STATE_PAUSED,
}

while job.state not in completed_states:
    time.sleep(30)
    job = client.batches.get(name=job.name)
    print(f"Job state: {job.state}")
# Example response:
# Job state: JOB_STATE_PENDING
# Job state: JOB_STATE_RUNNING
# Job state: JOB_STATE_RUNNING
# ...
# Job state: JOB_STATE_SUCCEEDED

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

Entrada de Cloud Storage

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output folder in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[OUTPUT]"
// outputUri = 'gs://my-bucket';

// URI of the input file in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[DATASET].jsonl"
// Or try:
// "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
// for a batch prediction that uses audio, video, and an image.
const inputUri =
  'gs://cloud-samples-data/generative-ai/batch/batch_requests_for_multimodal_input.jsonl';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-2.0-flash-001`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using Google Cloud Storage input and output buckets.
async function create_batch_prediction_gemini_gcs() {
  const gcsSource = new aiplatform.GcsSource({
    uris: [inputUri],
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    gcsSource: gcsSource,
    instancesFormat: 'jsonl',
  });

  const gcsDestination = new aiplatform.GcsDestination({
    outputUriPrefix: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    gcsDestination: gcsDestination,
    predictionsFormat: 'jsonl',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - GCS',
    model: modelName,
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_gcs();

Entrada de BigQuery

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
// outputUri = 'bq://projectid.dataset.table';

// URI of the multimodal input BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
const inputUri =
  'bq://storage-samples.generative_ai.batch_requests_for_multimodal_input';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-2.0-flash-001`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using BigQuery input and output datasets.
async function create_batch_prediction_gemini_bq() {
  const bqSource = new aiplatform.BigQuerySource({
    inputUri: inputUri,
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    bigquerySource: bqSource,
    instancesFormat: 'bigquery',
  });

  const bqDestination = new aiplatform.BigQueryDestination({
    outputUri: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    bigqueryDestination: bqDestination,
    predictionsFormat: 'bigquery',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - BigQuery',
    model: modelName, // Add model parameters per request in the input BigQuery table.
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_bq();

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

Entrada de Cloud Storage

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String gcsDestinationOutputUriPrefix = "gs://MY_BUCKET/";

    createBatchPredictionGeminiJobSample(project, gcsDestinationOutputUriPrefix);
  }

  // Create a batch prediction job using a JSONL input file and output URI, both in Cloud
  // Storage.
  public static BatchPredictionJob createBatchPredictionGeminiJobSample(
      String project, String gcsDestinationOutputUriPrefix) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      GcsSource gcsSource =
          GcsSource.newBuilder()
              .addUris(
                  "gs://cloud-samples-data/generative-ai/batch/"
                      + "batch_requests_for_multimodal_input.jsonl")
              // Or try
              // "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
              // for a batch prediction that uses audio, video, and an image.
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("jsonl")
              .setGcsSource(gcsSource)
              .build();
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-2.0-flash-001");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input jsonl file.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Entrada de BigQuery

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiBigqueryJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String bigqueryDestinationOutputUri = "bq://PROJECT_ID.MY_DATASET.MY_TABLE";

    createBatchPredictionGeminiBigqueryJobSample(project, bigqueryDestinationOutputUri);
  }

  // Create a batch prediction job using BigQuery input and output datasets.
  public static BatchPredictionJob createBatchPredictionGeminiBigqueryJobSample(
      String project, String bigqueryDestinationOutputUri) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      BigQuerySource bigquerySource =
          BigQuerySource.newBuilder()
              .setInputUri("bq://storage-samples.generative_ai.batch_requests_for_multimodal_input")
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("bigquery")
              .setBigquerySource(bigquerySource)
              .build();
      BigQueryDestination bigqueryDestination =
          BigQueryDestination.newBuilder().setOutputUri(bigqueryDestinationOutputUri).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("bigquery")
              .setBigqueryDestination(bigqueryDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-2.0-flash-001");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input BigQuery table.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Go

Antes de probar este ejemplo, sigue las Go instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Go de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

Entrada de Cloud Storage

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictGCS submits a batch prediction job using GCS data source as its input
func batchPredictGCS(w io.Writer, projectID, location string, inputURIs []string, outputURI string) error {
	// location := "us-central1"
	// inputURIs := []string{"gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl"}
	// outputURI := "gs://<cloud-bucket-name>/<prefix-name>"
	modelName := "gemini-2.0-flash-001"
	jobName := "batch-predict-gcs-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_GcsSource{
					GcsSource: &aiplatformpb.GcsSource{
						Uris: inputURIs,
					},
				},
				InstancesFormat: "jsonl",
			},
			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_GcsDestination{
					GcsDestination: &aiplatformpb.GcsDestination{
						OutputUriPrefix: outputURI,
					},
				},
				PredictionsFormat: "jsonl",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-2.0-flash-001"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Entrada de BigQuery

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictBQ submits a batch prediction job using BigQuery data source as its input
func batchPredictBQ(w io.Writer, projectID, location string, inputURI string, outputURI string) error {
	// location  := "us-central1"
	// inputURI  := "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"
	// outputURI := "bq://<cloud-project-name>.<dataset-name>.<table-name>"
	modelName := "gemini-2.0-flash-001"
	jobName := "batch-predict-bq-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_BigquerySource{
					BigquerySource: &aiplatformpb.BigQuerySource{
						InputUri: inputURI,
					},
				},
				InstancesFormat: "bigquery",
			},

			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_BigqueryDestination{
					BigqueryDestination: &aiplatformpb.BigQueryDestination{
						OutputUri: outputURI,
					},
				},
				PredictionsFormat: "bigquery",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-2.0-flash-001"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Recuperar la salida de un lote

Cuando se completa una tarea de predicción por lotes, la salida se almacena en el segmento de Cloud Storage o en la tabla de BigQuery que hayas especificado en tu solicitud.

Siguientes pasos