Verfügbare TensorFlow-Vorgänge
Auf dieser Seite werden die TensorFlow Python-APIs und Operatoren für Graphen aufgeführt, die in Cloud TPU verfügbar sind.
Verfügbare Python-APIs
Die folgende Liste enthält die Anleitungen für die verfügbaren TensorFlow Python APIs. Diese Liste ist nicht vollständig. Bibliotheksfunktionen, die nicht in dieser Liste enthalten sind, funktionieren möglicherweise, wenn sie aus verfügbaren Primitiven bestehen.
Empfehlungen zu bestimmten Operatoren finden Sie im Leitfaden zum Thema Leistung.
Modul | Verfügbare Python-API | Kommentare |
---|---|---|
tf |
tf.abs |
|
tf.acosh |
||
tf.add |
||
tf.add_n |
||
tf.angle |
||
tf.arg_max |
Argument dimension muss eine Compile-Zeitkonstante sein. |
|
tf.arg_min |
Argument dimension muss eine Compile-Zeitkonstante sein. |
|
tf.asinh |
||
tf.assign |
Nur für Ressourcenvariable verfügbar. | |
tf.assign_add |
Nur für Ressourcenvariable verfügbar. | |
tf.assign_sub |
Nur für Ressourcenvariable verfügbar. | |
tf.atan |
||
tf.atan2 |
||
tf.atanh |
||
tf.batch_to_space |
Die Argumente crops und block_shape müssen Compile-Zeitkonstanten sein. |
|
tf.batch_to_space_nd |
Argument crops muss eine Compile-Zeitkonstante sein. |
|
tf.broadcast_dynamic_shape |
||
tf.broadcast_static_shape |
||
tf.case |
Experimentell (Kontrollfluss). Funktioniert möglicherweise noch nicht zuverlässig. | |
tf.cast |
||
tf.ceil |
||
tf.cholesky |
Experimentell. Kann Probleme mit zahlenmäßiger Präzision haben. | |
tf.cholesky_solve |
Experimentell. Kann Probleme mit zahlenmäßiger Präzision haben. | |
tf.clip_by_average_norm |
||
tf.clip_by_global_norm |
||
tf.clip_by_norm |
||
tf.clip_by_value |
||
tf.complex |
||
tf.concat |
concat_dim muss eine Compile-Zeitkonstante sein. |
|
tf.cond |
Experimentell (Kontrollfluss). Funktioniert möglicherweise noch nicht zuverlässig. | |
tf.conj |
||
tf.constant |
||
tf.convert_to_tensor |
||
tf.cos |
||
tf.cosh |
||
tf.cross |
||
tf.cumprod |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.cumsum |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.depth_to_space |
||
tf.diag |
||
tf.diag_part |
||
tf.div |
int32 -Division ist langsamer als andere Typen. |
|
tf.divide |
int32 - Division ist langsamer als andere Typen. |
|
tf.dynamic_stitch |
indices muss eine Compile-Zeitkonstante sein. |
|
tf.einsum |
||
tf.equal |
||
tf.erf |
||
tf.erfc |
||
tf.exp |
||
tf.expand_dims |
dims muss eine Compile-Zeitkonstante sein. |
|
tf.expm1 |
||
tf.extract_image_patches |
||
tf.eye |
||
tf.fake_quant_with_min_max_args |
||
tf.fake_quant_with_min_max_args_gradient |
||
tf.fake_quant_with_min_max_vars |
||
tf.fake_quant_with_min_max_vars_gradient |
||
tf.fft |
||
tf.fft2d |
||
tf.fft3d |
||
tf.fill |
Argument dims muss eine Compile-Zeitkonstante sein. |
|
tf.floor |
||
tf.floordiv |
||
tf.floormod |
||
tf.foldl |
Experimentell (Kontrollfluss). | |
tf.foldr |
Experimentell (Kontrollfluss). | |
tf.gather |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.gather_nd |
||
tf.greater |
||
tf.greater_equal |
||
tf.hessians |
Experimentell (Kontrollfluss). | |
tf.identity |
||
tf.identity_n |
||
tf.ifft |
||
tf.ifft2d |
||
tf.ifft3d |
||
tf.imag |
||
tf.invert_permutation |
Argument x muss eine Compile-Zeitkonstante sein. |
|
tf.is_finite |
||
tf.is_inf |
||
tf.is_nan |
||
tf.is_non_decreasing |
||
tf.is_strictly_increasing |
||
tf.less |
||
tf.less_equal |
||
tf.linspace |
Die start -, stop - und num -Argumente müssen Compile-Zeitkonstanten sein. |
|
tf.log |
||
tf.log1p |
||
tf.log_sigmoid |
||
tf.logical_and |
||
tf.logical_or |
||
tf.logical_not |
||
tf.logical_xor |
||
tf.matmul |
Verwendet eine bfloat16 - MatMul mit der float32 - Akkumulation. |
|
tf.matrix_band_part |
||
tf.matrix_diag |
||
tf.matrix_diag_part |
||
tf.matrix_set_diag |
||
tf.matrix_triangular_solve |
Experimentell Kann Probleme mit zahlenmäßiger Präzision haben. | |
tf.maximum |
||
tf.meshgrid |
||
tf.minimum |
||
tf.mod |
||
tf.multinomial |
Argument num_samples muss eine Compile-Zeitkonstante sein. |
|
tf.multiply |
||
tf.negative |
||
tf.no_op |
||
tf.norm |
||
tf.not_equal |
||
tf.one_hot |
depth muss eine Compile-Zeitkonstante sein. |
|
tf.ones |
||
tf.ones_like |
||
tf.pad |
Argument paddings muss eine Compile-Zeitkonstante sein. Der Gradient des Paddings REFLECT ist noch nicht verfügbar. |
|
tf.pow |
||
tf.random_normal |
shape muss eine Compile-Zeitkonstante sein. |
|
tf.random_uniform |
shape muss eine Compile-Zeitkonstante sein. |
|
tf.range |
Die start -, limit - und delta -Argumente müssen Compile-Zeitkonstanten sein. |
|
tf.rank |
||
tf.real |
||
tf.realdiv |
||
tf.reciprocal |
||
tf.reduce_all |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reduce_any |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reduce_logsumexp |
||
tf.reduce_max |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reduce_min |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reduce_prod |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reduce_sum |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.reshape |
Argument shape muss eine Compile-Zeitkonstante sein. |
|
tf.reverse |
Argument dims muss eine Compile-Zeitkonstante sein. |
|
tf.reverse_sequence |
||
tf.reverse_v2 |
Argument axis muss eine Compile-Zeitkonstante sein. |
|
tf.rint |
||
tf.round |
||
tf.rsqrt |
||
tf.saturate_cast |
||
tf.scalar_mul |
||
tf.scan |
Experimentell (Kontrollfluss). | |
tf.scatter_nd |
||
tf.sequence_mask |
||
tf.shape |
||
tf.shape_n |
||
tf.sigmoid |
||
tf.sign |
||
tf.sin |
||
tf.sinh |
||
tf.size |
||
tf.slice |
size muss eine Compile-Zeitkonstante sein. Außerdem muss entweder begin eine Compile-Zeitkonstante oder size darf nicht negativ sein. Rückpropagierung wird nur unterstützt, wenn begin und size Compile-Zeitkonstanten sind. |
|
tf.space_to_batch |
paddings und block_shape müssen Compile-Zeitkonstanten sein. |
|
tf.space_to_batch_nd |
paddings muss eine Compile-Zeitkonstante sein. |
|
tf.space_to_depth |
||
tf.split |
axis muss eine Compile-Zeitkonstante sein. |
|
tf.sqrt |
||
tf.square |
||
tf.squared_difference |
||
tf.squeeze |
||
tf.stack |
||
tf.stop_gradient |
||
tf.strided_slice |
||
tf.tan |
||
tf.tanh |
||
tf.tensordot |
||
tf.tile |
Argument multiples muss eine Compile-Zeitkonstante sein. |
|
tf.to_bfloat16 |
||
tf.to_float |
||
tf.to_int32 |
||
tf.to_int64 |
Der Support für int64 ist eingeschränkt. |
|
tf.trace |
||
tf.transpose |
Argument perm muss eine Compile-Zeitkonstante sein. |
|
tf.truediv |
||
tf.truncated_normal |
shape muss eine Compile-Zeitkonstante sein. |
|
tf.truncatediv |
||
tf.truncatemod |
||
tf.unsorted_segment_sum |
||
tf.unstack |
||
tf.where |
Sowohl x als auch y dürfen nicht None sein. Wenn sowohl x als auch y None sind, hat der Operator keine statische Form. |
|
tf.while_loop |
Die Berechnung des Gradienten einer while-Schleife erfordert die Übergabe des Arguments maximum_iterations . |
|
tf.zeros |
||
tf.zeros_like |
||
tf.Tensor.__getitem__ |
Der Anfang, das Ende und die Schritte eines Segments müssen Compile-Zeitkonstanten sein. | |
tf.bitwise |
tf.bitwise_and |
|
tf.bitwise_or |
||
tf.bitwise_invert |
||
tf.contrib.stateless |
tf.contrib.stateless.stateless_random_normal |
|
tf.contrib.stateless.stateless_random_uniform |
||
tf.image |
tf.image.adjust_brightness |
|
tf.image.adjust_contrast |
||
tf.image.adjust_gamma |
||
tf.image.adjust_hue |
||
tf.image.adjust_saturation |
||
tf.image.central_crop |
Der Crop-Faktor muss eine Compile-Zeitkonstante sein. | |
tf.image.convert_image_dtype |
||
tf.image.flip_left_right |
||
tf.image.flip_up_down |
||
tf.image.grayscale_to_rgb |
||
tf.image.hsv_to_rgb |
||
tf.image.resize_bilinear |
Nur align_corners=True ist verfügbar. size muss eine Compile-Zeitkonstante sein. |
|
tf.image.random_brightness |
||
tf.image.random_contrast |
||
tf.image.random_flip_left_right |
||
tf.image.random_flip_up_down |
||
tf.image.random_hue |
||
tf.image.random_saturation |
||
tf.image.rgb_to_hsv |
||
tf.image.rgb_to_grayscale |
||
tf.image.rot90 |
||
tf.image.total_variation |
||
tf.image.transpose_image |
||
tf.layers |
tf.layers.average_pooling1d |
|
tf.layers.average_pooling2d |
||
tf.layers.average_pooling1d |
||
tf.layers.batch_normalization |
||
tf.layers.conv1d |
||
tf.layers.conv2d |
||
tf.layers.conv2d_transpose |
||
tf.layers.conv3d |
||
tf.layers.conv3d_transpose |
||
tf.layers.dense |
||
tf.layers.dropout |
||
tf.layers.flatten |
||
tf.layers.max_pooling1d |
||
tf.layers.max_pooling2d |
||
tf.layers.max_pooling3d |
||
tf.layers.separable_conv2d |
||
tf.nn |
tf.nn.atrous_conv2d |
|
tf.nn.atrous_conv2d_transpose |
||
tf.nn.avg_pool |
||
tf.nn.avg_pool3d |
||
tf.nn.batch_normalization |
||
tf.nn.bias_add |
||
tf.nn.conv1d |
||
tf.nn.conv2d |
||
tf.nn.conv2d_backprop_filter |
||
tf.nn.conv2d_backprop_input |
||
tf.nn.conv2d_transpose |
||
tf.nn.conv3d |
||
tf.nn.conv3d_backprop_filter |
||
tf.nn.conv3d_backprop_input |
||
tf.nn.conv3d_transpose |
||
tf.nn.convolution |
||
tf.nn.crelu |
||
tf.nn.depthwise_conv2d |
||
tf.nn.depthwise_conv2d_native |
||
tf.nn.depthwise_conv2d_native_backprop_filter |
||
tf.nn.depthwise_conv2d_native_backprop_input |
||
tf.nn.dropout |
||
tf.nn.dynamic_rnn |
Experimentell | |
tf.nn.elu |
||
tf.nn.fused_batch_norm |
||
tf.nn.l2_loss |
||
tf.nn.l2_normalize |
||
tf.nn.leaky_relu |
||
tf.nn.local_response_normalization |
||
tf.nn.log_poisson_loss |
||
tf.nn.log_softmax |
||
tf.nn.max_pool |
||
tf.nn.max_pool3d |
||
tf.nn.moments |
||
tf.nn.normalize_moments |
||
tf.nn.pool |
||
tf.nn.relu |
||
tf.nn.relu6 |
||
tf.nn.relu_layer |
||
tf.nn.selu |
||
tf.nn.separable_conv2d |
||
tf.nn.sigmoid_cross_entropy_with_logits |
||
tf.nn.softmax |
||
tf.nn.softmax_cross_entropy_with_logits |
||
tf.nn.softplus |
||
tf.nn.softsign |
||
tf.nn.sparse_softmax_cross_entropy_with_logits |
||
tf.nn.static_bidirectional_rnn |
Experimentell. | |
tf.nn.static_rnn |
Experimentell. | |
tf.nn.weighted_cross_entropy_with_logits |
Experimentell. | |
tf.nn.weighted_moments |
||
tf.nn.with_space_to_batch |
||
tf.nn.xw_plus_b |
||
tf.nn.zero_fraction |
||
tf.spectral |
tf.spectral.fft |
|
tf.spectral.fft2d |
||
tf.spectral.fft3d |
||
tf.spectral.ifft |
||
tf.spectral.ifft2d |
||
tf.spectral.ifft3d |
||
tf.spectral.irfft |
fft_length muss eine Compile-Zeitkonstante sein. |
|
tf.spectral.irfft2d |
fft_length muss eine Compile-Zeitkonstante sein. |
|
tf.spectral.irfft3d |
fft_length muss eine Compile-Zeitkonstante sein. |
|
tf.spectral.rfft |
fft_length muss eine Compile-Zeitkonstante sein. |
|
tf.spectral.rfft2d |
fft_length muss eine Compile-Zeitkonstante sein. |
|
tf.spectral.rfft3d |
fft_length muss eine Compile-Zeitkonstante sein. |
Nicht verfügbare Python-APIs
Diese Liste ist nicht vollständig. Die folgenden Vorgänge sind in Cloud TPU nicht verfügbar:
Modul | Nicht verfügbare Python-API | Kommentare |
---|---|---|
tf |
tf.accumulate_n |
Verwendet Ref-Variablen. |
tf.acos |
||
tf.asin |
||
tf.betainc |
||
tf.bitcast |
||
tf.add_check_numerics_ops |
Programme mit Operatoren zum Prüfen numerischer Werte sollten ausgeführt werden, der Operator zum Prüfen numerischer Werte wird jedoch derzeit ignoriert. | |
tf.assert_... |
Programme, die Assertions enthalten, sollten ausgeführt werden, die Assertions werden jedoch ignoriert. | |
tf.check_numerics |
Programme mit Operatoren zum Prüfen numerischer Werte sollten ausgeführt werden, der Operator zum Prüfen numerischer Werte wird jedoch derzeit ignoriert. | |
tf.confusion_matrix |
||
tf.count_nonzero |
Verwendet int64 -Reduktion. |
|
tf.count_up_to |
||
tf.create_partitioned_variables |
||
tf.dequantize |
||
tf.digamma |
||
tf.dynamic_partition |
||
tf.edit_distance |
||
tf.fake_quant_with_min_max_vars_per_channel |
||
tf.fake_quant_with_min_max_vars_per_channel_gradient |
||
tf.histogram_fixed_width |
||
tf.igamma |
||
tf.igammac |
||
tf.lbeta |
||
tf.lgamma |
||
tf.matrix_determinant |
||
tf.matrix_inverse |
||
tf.matrix_solve |
||
tf.matrix_solve_ls |
||
tf.polygamma |
||
tf.py_func |
||
tf.qr |
||
tf.quantize_v2 |
||
tf.quantized_concat |
||
tf.random_crop |
||
tf.random_gamma |
||
tf.random_poisson |
||
tf.random_shuffle |
||
tf.scatter_add |
||
tf.scatter_div |
||
tf.scatter_mul |
||
tf.scatter_nd_add |
||
tf.scatter_nd_sub |
||
tf.scatter_nd_update |
||
tf.segment_mean |
||
tf.segment_max |
||
tf.segment_min |
||
tf.segment_prod |
||
tf.segment_sum |
||
tf.self_adjoint_eig |
||
tf.self_adjoint_eigvals |
||
tf.setdiff1d |
||
tf.sparse_... |
||
tf.string_... |
||
tf.substr |
||
tf.svd |
||
tf.to_double |
||
tf.unique |
||
tf.unsorted_segment_max |
||
tf.zeta |
||
tf.bitwise.bitwise_xor |
||
tf.contrib.stateless.stateless_truncated_normal |
Verfügbare Graphenoperatoren
Operator | Typeinschränkung |
---|---|
Abs |
T={bfloat16,float,int32,int64} |
Acos |
T={bfloat16,complex64,float,int32,int64} |
Acosh |
T={bfloat16,complex64,float} |
Add |
T={bfloat16,complex64,float,int32,int64} |
AddN |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AdjustContrastv2 |
T={float} |
AdjustHue |
T={float} |
AdjustSaturation |
T={float} |
All |
Tidx={int32,int64} |
AllToAll |
T={bfloat16,float} |
Angle |
Tout={float} T={complex64} |
Any |
Tidx={int32,int64} |
ApproximateEqual |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMax |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMin |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Asin |
T={bfloat16,complex64,float,int32,int64} |
Asinh |
T={bfloat16,complex64,float} |
Assert |
T={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
AssignAddVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignSubVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Atan |
T={bfloat16,complex64,float,int32,int64} |
Atan2 |
T={bfloat16,float} |
Atanh |
T={bfloat16,complex64,float} |
AvgPool |
T={bfloat16,float} |
AvgPool3D |
T={bfloat16,float} |
AvgPool3DGrad |
T={bfloat16,float} |
AvgPoolGrad |
T={bfloat16,float} |
BatchMatMul |
T={bfloat16,complex64,float,int32,int64} |
BatchToSpace |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BatchToSpaceND |
Tcrops={int32,int64} Tblock_shape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BiasAdd |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddGrad |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddV1 |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Bitcast |
type={bfloat16,complex64,float,int32,int64,uint32,uint64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BitwiseAnd |
T={int32,int64,uint32,uint64} |
BitwiseOr |
T={int32,int64,uint32,uint64} |
BitwiseXor |
T={int32,int64,uint32,uint64} |
BroadcastArgs |
T={int32,int64} |
BroadcastGradientArgs |
T={int32,int64} |
BroadcastTo |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Bucketize |
T={float,int32,int64} |
Cast |
DstT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} SrcT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Ceil |
T={bfloat16,float} |
CheckNumerics |
T={bfloat16,float} |
Cholesky |
T={float} |
ClipByValue |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
CollectivePermute |
T={bfloat16,float} |
Complex |
Tout={complex64} T={float} |
ComplexAbs |
Tout={float} T={complex64} |
Concat |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ConcatOffset |
|
ConcatV2 |
Tidx={int32} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Conj |
T={complex64} |
ConjugateTranspose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Const |
dtype={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
ControlTrigger |
|
Conv2D |
T={bfloat16,float} |
Conv2DBackpropFilter |
T={bfloat16,float} |
Conv2DBackpropInput |
T={bfloat16,float} |
Conv3D |
T={bfloat16,float} |
Conv3DBackpropFilterV2 |
T={bfloat16,float} |
Conv3DBackpropInputV2 |
Tshape={int32,int64} T={bfloat16,float} |
Cos |
T={bfloat16,complex64,float} |
Cosh |
T={bfloat16,complex64,float} |
Cross |
T={bfloat16,float,int32,int64,uint32,uint64} |
CrossReplicaSum |
T={bfloat16,float} |
Cumprod |
Tidx={int32,int64} T={bfloat16,float,int32} |
Cumsum |
Tidx={int32,int64} T={bfloat16,float,int32} |
DataFormatVecPermute |
T={int32,int64} |
DepthToSpace |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
DepthwiseConv2dNative |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropFilter |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropInput |
T={bfloat16,float} |
Diag |
T={bfloat16,complex64,float,int32,int64} |
DiagPart |
T={bfloat16,complex64,float,int32,int64} |
Digamma |
T={bfloat16,float} |
Div |
T={bfloat16,complex64,float,int32,int64} |
DivNoNan |
T={float} |
DynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Elu |
T={bfloat16,float} |
EluGrad |
T={bfloat16,float} |
Empty |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
EmptyTensorList |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Equal |
T={bfloat16,bool,complex64,float,int32,int64} |
Erf |
T={bfloat16,float} |
Erfc |
T={bfloat16,float} |
Exp |
T={bfloat16,complex64,float} |
ExpandDims |
Tdim={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Expm1 |
T={bfloat16,complex64,float} |
ExtractImagePatches |
T={bfloat16,float,int32,int64,uint32,uint64} |
FFT |
Tcomplex={complex64} |
FFT2D |
Tcomplex={complex64} |
FFT3D |
Tcomplex={complex64} |
FakeParam |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
FakeQuantWithMinMaxArgs |
|
FakeQuantWithMinMaxArgsGradient |
|
FakeQuantWithMinMaxVars |
|
FakeQuantWithMinMaxVarsGradient |
|
Fill |
index_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Floor |
T={bfloat16,float} |
FloorDiv |
T={bfloat16,complex64,float,int32,int64} |
FloorMod |
T={bfloat16,float,int32,int64} |
FusedBatchNorm |
T={float} |
FusedBatchNormGrad |
T={float} |
FusedBatchNormGradV2 |
U={float} T={bfloat16,float} |
FusedBatchNormV2 |
U={float} T={bfloat16,float} |
Gather |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherNd |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherV2 |
Taxis={int32,int64} Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GetItem |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Greater |
T={bfloat16,float,int32,int64,uint32,uint64} |
GreaterEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
HSVToRGB |
T={bfloat16,float} |
IFFT |
Tcomplex={complex64} |
IFFT2D |
Tcomplex={complex64} |
IFFT3D |
Tcomplex={complex64} |
IRFFT |
|
IRFFT2D |
|
IRFFT3D |
|
Identity |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
IdentityN |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
If |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Imag |
Tout={float} T={complex64} |
InfeedDequeue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InfeedDequeueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceAdd |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceUpdate |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Inv |
T={bfloat16,complex64,float,int32,int64} |
Invert |
T={int32,int64,uint32,uint64} |
InvertPermutation |
T={int32} |
IsFinite |
T={bfloat16,float} |
IsInf |
T={bfloat16,float} |
IsNan |
T={bfloat16,float} |
L2Loss |
T={bfloat16,float} |
LRN |
T={bfloat16,float} |
LRNGrad |
T={bfloat16,float} |
LeakyRelu |
T={bfloat16,float} |
LeakyReluGrad |
T={bfloat16,float} |
LeftShift |
T={int32,int64,uint32,uint64} |
Less |
T={bfloat16,float,int32,int64,uint32,uint64} |
LessEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
Lgamma |
T={bfloat16,float} |
LinSpace |
Tidx={int32,int64} T={bfloat16,float} |
ListDiff |
out_idx={int32,int64} T={int32,int64} |
Log |
T={bfloat16,complex64,float} |
Log1p |
T={bfloat16,complex64,float} |
LogSoftmax |
T={bfloat16,float} |
LogicalAnd |
|
LogicalNot |
|
LogicalOr |
|
MatMul |
T={bfloat16,complex64,float} |
MatrixBandPart |
Tindex={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiagPart |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixSetDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixTriangularSolve |
T={complex64,float} |
Max |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
MaxPool |
T={bfloat16,float,int32,int64} |
MaxPool3D |
T={bfloat16,float} |
MaxPool3DGrad |
TInput={bfloat16,float} T={bfloat16,float} |
MaxPool3DGradGrad |
T={float} |
MaxPoolGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolGradGrad |
T={float} |
MaxPoolGradGradV2 |
T={float} |
MaxPoolGradV2 |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolV2 |
T={bfloat16,float,int32,int64} |
Maximum |
T={bfloat16,float,int32,int64} |
Mean |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Min |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Minimum |
T={bfloat16,float,int32,int64} |
MirrorPad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Mod |
T={bfloat16,float,int32,int64} |
Mul |
T={bfloat16,complex64,float,int32,int64} |
Multinomial |
output_dtype={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
Neg |
T={bfloat16,complex64,float,int32,int64} |
NoOp |
|
NonMaxSuppressionV4 |
T={float} |
NotEqual |
T={bfloat16,bool,complex64,float,int32,int64} |
OneHot |
TI={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OnesLike |
T={bfloat16,bool,complex64,float,int32,int64} |
OutfeedEnqueue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OutfeedEnqueueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PadV2 |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ParallelDynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PlaceholderWithDefault |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pow |
T={bfloat16,complex64,float,int32,int64} |
PreventGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Prod |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Qr |
T={float} |
QuantizeAndDequantizeV2 |
T={bfloat16,float} |
QuantizeAndDequantizeV3 |
T={bfloat16,float} |
RFFT |
|
RFFT2D |
|
RFFT3D |
|
RGBToHSV |
T={bfloat16,float} |
RandomShuffle |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
RandomStandardNormal |
T={int32,int64} dtype={bfloat16,float} |
RandomUniform |
T={int32,int64} dtype={bfloat16,float} |
RandomUniformInt |
T={int32,int64} Tout={int32,int64} |
Range |
Tidx={bfloat16,float,int32,int64} |
Rank |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReadVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Real |
Tout={float} T={complex64} |
RealDiv |
T={bfloat16,complex64,float,int32,int64} |
Reciprocal |
T={bfloat16,complex64,float,int32,int64} |
ReciprocalGrad |
T={bfloat16,complex64,float} |
RecvTPUEmbeddingActivations |
|
Relu |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6 |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6Grad |
T={bfloat16,float,int32,int64,uint32,uint64} |
ReluGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
Reshape |
Tshape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResizeBilinear |
T={bfloat16,float,int32,int64} |
ResizeBilinearGrad |
T={bfloat16,float} |
ResizeNearestNeighbor |
T={float,int32,int64} |
ResourceApplyAdaMax |
T={bfloat16,float} |
ResourceApplyAdadelta |
T={bfloat16,float} |
ResourceApplyAdagrad |
T={bfloat16,float} |
ResourceApplyAdagradDA |
T={bfloat16,float} |
ResourceApplyAdam |
T={bfloat16,float} |
ResourceApplyAddSign |
T={bfloat16,float} |
ResourceApplyCenteredRMSProp |
T={bfloat16,float} |
ResourceApplyFtrl |
T={bfloat16,float} |
ResourceApplyFtrlV2 |
T={bfloat16,float} |
ResourceApplyGradientDescent |
T={bfloat16,float} |
ResourceApplyKerasMomentum |
T={bfloat16,float} |
ResourceApplyMomentum |
T={bfloat16,float} |
ResourceApplyPowerSign |
T={bfloat16,float} |
ResourceApplyProximalAdagrad |
T={bfloat16,float} |
ResourceApplyProximalGradientDescent |
T={bfloat16,float} |
ResourceApplyRMSProp |
T={bfloat16,float} |
ResourceGather |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterAdd |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterDiv |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMax |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMin |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMul |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdAdd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdSub |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdUpdate |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterSub |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterUpdate |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceStridedSliceAssign |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Reverse |
T={bool,complex64,float,int32,int64} |
ReverseSequence |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReverseV2 |
T={bfloat16,bool,complex64,float,int32,int64} Tidx={int32,int64} |
RightShift |
T={int32,int64,uint32,uint64} |
Rint |
T={bfloat16,float} |
Round |
T={bfloat16,complex64,float,int32,int64} |
Rsqrt |
T={bfloat16,complex64,float} |
RsqrtGrad |
T={bfloat16,complex64,float} |
ScatterNd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Select |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Selu |
T={bfloat16,float} |
SeluGrad |
T={bfloat16,float} |
SendTPUEmbeddingGradients |
|
Shape |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ShapeN |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sigmoid |
T={bfloat16,complex64,float} |
SigmoidGrad |
T={bfloat16,complex64,float} |
Sign |
T={bfloat16,complex64,float,int32,int64} |
Sin |
T={bfloat16,complex64,float} |
Sinh |
T={bfloat16,complex64,float} |
Size |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Slice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Snapshot |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Softmax |
T={bfloat16,float} |
SoftmaxCrossEntropyWithLogits |
T={bfloat16,float} |
Softplus |
T={bfloat16,float} |
SoftplusGrad |
T={bfloat16,float} |
Softsign |
T={bfloat16,float} |
SoftsignGrad |
T={bfloat16,float} |
SpaceToBatch |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToBatchND |
Tblock_shape={int32,int64} Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToDepth |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SparseMatMul |
Tb={bfloat16,float} Ta={bfloat16,float} |
SparseSoftmaxCrossEntropyWithLogits |
Tlabels={int32,int64} T={bfloat16,float} |
SparseToDense |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Split |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SplitV |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sqrt |
T={bfloat16,complex64,float} |
SqrtGrad |
T={bfloat16,complex64,float} |
Square |
T={bfloat16,complex64,float,int32,int64} |
SquaredDifference |
T={bfloat16,complex64,float,int32,int64} |
Squeeze |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackCloseV2 |
|
StackPopV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackPushV2 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StatelessIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StatelessMultinomial |
output_dtype={int32,int64} Tseed={int32} T={bfloat16,float} |
StatelessRandomNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniform |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniformInt |
Tseed={int32} T={int32,int64} dtype={int32,int64} |
StatelessTruncatedNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StopGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSlice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSliceGrad |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sub |
T={bfloat16,complex64,float,int32,int64} |
Sum |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
SymbolicGradient |
Tout={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TPUEmbeddingActivations |
|
Tan |
T={bfloat16,complex64,float,int32,int64} |
Tanh |
T={bfloat16,complex64,float} |
TanhGrad |
T={bfloat16,complex64,float} |
TensorArrayCloseV3 |
|
TensorArrayConcatV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGatherV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGradV3 |
|
TensorArrayReadV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayScatterV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArraySizeV3 |
|
TensorArraySplitV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayWriteV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListElementShape |
shape_type={int32,int64} |
TensorListPopBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListPushBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListReserve |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Tile |
Tmultiples={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TopKV2 |
T={bfloat16,float,int32,uint32} |
Transpose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TruncateDiv |
T={bfloat16,complex64,float,int32,int64} |
TruncateMod |
T={bfloat16,float,int32,int64} |
TruncatedNormal |
T={int32,int64} dtype={float} |
Unpack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentMax |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentMin |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentProd |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentSum |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
VarIsInitializedOp |
|
VariableShape |
out_type={int32,int64} |
While |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xdivy |
T={complex64,float} |
XlaBroadcastHelper |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaConv |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDequantize |
|
XlaDot |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicUpdateSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaHostCompute |
Toutputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tinputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
XlaKeyValueSort |
V={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} K={bfloat16,float,int32,int64,uint32,uint64} |
XlaPad |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecv |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecvFromHost |
Toutput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaReduce |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaReduceWindow |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSelectAndScatter |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSend |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSendToHost |
Tinput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSort |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xlogy |
T={complex64,float} |
ZerosLike |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Arg |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
_ArrayToList |
out_types={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_ListToArray |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Retval |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |