Mendeteksi pembicara yang berbeda dalam rekaman audio

Halaman ini menjelaskan cara mendapatkan label untuk berbagai pembicara dalam data audio yang ditranskripsikan oleh Speech-to-Text.

Terkadang, data audio berisi sampel dari lebih dari satu orang yang sedang berbicara. Misalnya, audio dari panggilan telepon biasanya berisi suara dari dua orang atau lebih. Transkripsi panggilan idealnya menyertakan siapa yang sedang berbicara di tiap-tiap waktu.

Diarisasi Pembicara

Speech-to-Text dapat mengenali beberapa pembicara dalam klip audio yang sama. Saat mengirim permintaan transkripsi audio ke Speech-to-Text, Anda dapat menyertakan parameter yang memberi tahu Speech-to-Text untuk mengidentifikasi pembicara yang berbeda-beda dalam sampel audio. Fitur ini, yang disebut diarisasi pembicara, mendeteksi saat ada perubahan pembicara dan memberi label berdasarkan angka masing-masing suara yang terdeteksi dalam audio.

Saat Anda mengaktifkan diarisasi pembicara dalam permintaan transkripsi, Speech-to-Text akan mencoba membedakan berbagai suara yang disertakan dalam sampel audio. Hasil transkripsi akan menandai setiap kata dengan angka yang ditetapkan untuk masing-masing pembicara. Kata-kata yang diucapkan oleh pembicara yang sama memiliki angka yang sama. Hasil transkripsi dapat menyertakan angka hingga sebanyak pembicara yang dapat diidentifikasi secara unik oleh Speech-to-Text dalam contoh audio.

Saat Anda menggunakan diarisasi pembicara, Speech-to-Text akan menghasilkan agregat yang berjalan dari semua hasil yang diberikan dalam transkripsi. Setiap hasil mencakup kata-kata dari hasil sebelumnya. Dengan demikian, array words dalam hasil akhir memberikan hasil transkripsi yang lengkap dan dalam bentuk diarisasi.

Tinjau halaman dukungan bahasa untuk mengetahui apakah fitur ini tersedia untuk bahasa Anda.

Mengaktifkan diarisasi pembicara dalam permintaan

Untuk mengaktifkan diarisasi pembicara, Anda perlu menetapkan kolom diarization_config di RecognitionFeatures. Anda harus menetapkan nilai min_speaker_count dan max_speaker_count sesuai dengan jumlah pembicara yang diharapkan dalam transkrip.

Speech-to-Text mendukung diarisasi pembicara untuk semua metode pengenalan ucapan: speech:recognize dan Streaming.

Menggunakan file lokal

Cuplikan kode berikut menunjukkan cara mengaktifkan diarisasi pembicara dalam permintaan transkripsi ke Speech-to-Text menggunakan file lokal

Protocol

Lihat endpoint speech:recognize API untuk mengetahui detail selengkapnya.

Untuk melakukan pengenalan ucapan sinkron, buat permintaan POST dan berikan isi permintaan yang sesuai. Berikut ini contoh permintaan POST yang menggunakan curl. Contoh ini menggunakan Google Cloud CLI untuk membuat token akses. Untuk petunjuk tentang cara menginstal gcloud CLI, lihat panduan memulai.

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
    https://speech.googleapis.com/v2/projects/{project}/locations/{location}/recognizers/{recognizer}:recognize \
    --data '{
    "config": {
        "features": {
            "diarizationConfig": {
              "minSpeakerCount": 2,
              "maxSpeakerCount": 2
            },
        }
    },
    "uri": "gs://cloud-samples-tests/speech/commercial_mono.wav"
}' > speaker-diarization.txt

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON yang disimpan ke file bernama speaker-diarization.txt.

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "hi I'd like to buy a Chromecast and I was wondering whether you could help me with that certainly which color would you like we have blue black and red uh let's go with the black one would you like the new Chromecast Ultra model or the regular Chrome Cast regular Chromecast is fine thank you okay sure we like to ship it regular or Express Express please terrific it's on the way thank you thank you very much bye",
          "confidence": 0.92142606,
          "words": [
            {
              "startOffset": "0s",
              "endOffset": "1.100s",
              "word": "hi",
              "speakerLabel": "2"
            },
            {
              "startOffset": "1.100s",
              "endOffset": "2s",
              "word": "I'd",
              "speakerLabel": "2"
            },
            {
              "startOffset": "2s",
              "endOffset": "2s",
              "word": "like",
              "speakerLabel": "2"
            },
            {
              "startOffset": "2s",
              "endOffset": "2.100s",
              "word": "to",
              "speakerLabel": "2"
            },
            ...
            {
              "startOffset": "6.500s",
              "endOffset": "6.900s",
              "word": "certainly",
              "speakerLabel": "1"
            },
            {
              "startOffset": "6.900s",
              "endOffset": "7.300s",
              "word": "which",
              "speakerLabel": "1"
            },
            {
              "startOffset": "7.300s",
              "endOffset": "7.500s",
              "word": "color",
              "speakerLabel": "1"
            },
            ...
          ]
        }
      ],
      "languageCode": "en-us"
    }
  ]
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Speech-to-Text, lihat Library klien Speech-to-Text. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Go Speech-to-Text.

Untuk mengautentikasi ke Speech-to-Text, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import (
	"context"
	"fmt"
	"io"
	"os"
	"strings"

	speech "cloud.google.com/go/speech/apiv1"
	"cloud.google.com/go/speech/apiv1/speechpb"
)

// transcribe_diarization_gcs_beta Transcribes a remote audio file using speaker diarization.
func transcribe_diarization(w io.Writer) error {

	ctx := context.Background()
	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	diarizationConfig := &speechpb.SpeakerDiarizationConfig{
		EnableSpeakerDiarization: true,
		MinSpeakerCount:          2,
		MaxSpeakerCount:          2,
	}

	recognitionConfig := &speechpb.RecognitionConfig{
		Encoding:          speechpb.RecognitionConfig_LINEAR16,
		SampleRateHertz:   8000,
		LanguageCode:      "en-US",
		DiarizationConfig: diarizationConfig,
	}

	// Get the contents of the local audio file
	content, err := os.ReadFile("../resources/commercial_mono.wav")
	if err != nil {
		return fmt.Errorf("error reading file %w", err)
	}
	audio := &speechpb.RecognitionAudio{
		AudioSource: &speechpb.RecognitionAudio_Content{Content: content},
	}

	longRunningRecognizeRequest := &speechpb.LongRunningRecognizeRequest{
		Config: recognitionConfig,
		Audio:  audio,
	}

	operation, err := client.LongRunningRecognize(ctx, longRunningRecognizeRequest)
	if err != nil {
		return fmt.Errorf("error running recognize %w", err)
	}

	response, err := operation.Wait(ctx)
	if err != nil {
		return err
	}

	// Speaker Tags are only included in the last result object, which has only one
	// alternative.
	alternative := response.Results[len(response.Results)-1].Alternatives[0]

	wordInfo := alternative.GetWords()[0]
	currentSpeakerTag := wordInfo.GetSpeakerTag()

	var speakerWords strings.Builder

	speakerWords.WriteString(fmt.Sprintf("Speaker %d: %s", wordInfo.GetSpeakerTag(), wordInfo.GetWord()))

	// For each word, get all the words associated with one speaker, once the speaker changes,
	// add a new line with the new speaker and their spoken words.
	for i := 1; i < len(alternative.Words); i++ {
		wordInfo := alternative.Words[i]
		if currentSpeakerTag == wordInfo.GetSpeakerTag() {
			speakerWords.WriteString(" ")
			speakerWords.WriteString(wordInfo.GetWord())
		} else {
			speakerWords.WriteString(fmt.Sprintf("\nSpeaker %d: %s",
				wordInfo.GetSpeakerTag(), wordInfo.GetWord()))
			currentSpeakerTag = wordInfo.GetSpeakerTag()
		}
	}
	fmt.Fprintf(w, speakerWords.String())
	return nil
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Speech-to-Text, lihat Library klien Speech-to-Text. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Python Speech-to-Text.

Untuk mengautentikasi ke Speech-to-Text, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import speech_v1p1beta1 as speech

client = speech.SpeechClient()

speech_file = "resources/commercial_mono.wav"

with open(speech_file, "rb") as audio_file:
    content = audio_file.read()

audio = speech.RecognitionAudio(content=content)

diarization_config = speech.SpeakerDiarizationConfig(
    enable_speaker_diarization=True,
    min_speaker_count=2,
    max_speaker_count=10,
)

config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    diarization_config=diarization_config,
)

print("Waiting for operation to complete...")
response = client.recognize(config=config, audio=audio)

# The transcript within each result is separate and sequential per result.
# However, the words list within an alternative includes all the words
# from all the results thus far. Thus, to get all the words with speaker
# tags, you only have to take the words list from the last result:
result = response.results[-1]

words_info = result.alternatives[0].words

# Printing out the output:
for word_info in words_info:
    print(f"word: '{word_info.word}', speaker_tag: {word_info.speaker_tag}")

return result