Inspecciona texto estructurado en busca de datos sensibles

La protección de datos sensibles puede detectar y clasificar datos sensibles en el contenido estructurado, como CSV. Mediante la inspección o la desidentificación como una tabla, la estructura y las columnas proporcionan pistas adicionales a la Protección de datos sensibles que pueden permitirle brindar mejores resultados para algunos casos de uso.

Inspecciona una tabla

Las muestras de códigos que figuran a continuación ilustran cómo inspeccionar una tabla de datos en busca de contenido confidencial. Las tablas son compatibles con una variedad de tipos.

C#

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


using System;
using System.Collections.Generic;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;

public class InspectTable
{
    public static InspectContentResponse InspectTableData(
        string projectId,
        Table tableToInspect = null,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate a client.
        var dlp = DlpServiceClient.Create();

        // Construct the table if null.
        if (tableToInspect == null)
        {
            var row1 = new Value[]
            {
                new Value { StringValue = "John Doe" },
                new Value { StringValue = "(206) 555-0123" }
            };
            var row2 = new Value[]
            {
                new Value { StringValue = "Mark Twain" },
                new Value { StringValue = "(450) 555-0123" }
            };

            tableToInspect = new Table
            {
                Headers =
                {
                    new FieldId { Name = "Name" }, new FieldId { Name = "Phone" }
                },
                Rows =
                {
                    new Table.Types.Row { Values = { row1 } },
                    new Table.Types.Row { Values = { row2 } }
                }
            };
        }

        // Set content item.
        var contentItem = new ContentItem { Table = tableToInspect };

        // Construct inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[] { new InfoType { Name = "PHONE_NUMBER" } }
            },
            IncludeQuote = true,
        };

        // Construct a request.
        var request = new InspectContentRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectConfig = inspectConfig,
            Item = contentItem,
        };

        // Call the API.
        var response = dlp.InspectContent(request);

        // Inspect the results.
        var resultFindings = response.Result.Findings;

        Console.WriteLine($"Findings: {resultFindings.Count}");

        foreach (var f in resultFindings)
        {
            Console.WriteLine("Quote: " + f.Quote);
            Console.WriteLine("Info type: " + f.InfoType.Name);
            Console.WriteLine("Likelihood: " + f.Likelihood);
        }

        return response;
    }
}

Go

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectTable inspects a table for sensitive content
func inspectTable(w io.Writer, projectID string) error {
	// projectID := "your-project-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// create a default table
	tableToInspect := &dlppb.Table{
		Headers: []*dlppb.FieldId{
			{Name: "name"},
			{Name: "phone"},
		},
		Rows: []*dlppb.Table_Row{
			{
				Values: []*dlppb.Value{
					{
						Type: &dlppb.Value_StringValue{
							StringValue: "John Doe",
						},
					},
					{
						Type: &dlppb.Value_StringValue{
							StringValue: "(206) 555-0123",
						},
					},
				},
			},
		},
	}

	// Specify the table to be inspected.
	contentItem := &dlppb.ContentItem{
		DataItem: &dlppb.ContentItem_Table{
			Table: tableToInspect,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "PHONE_NUMBER"},
	}

	// Construct the Inspect request to be sent by the client.
	req := &dlppb.InspectContentRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Item:   contentItem,
		InspectConfig: &dlppb.InspectConfig{
			InfoTypes:    infoTypes,
			IncludeQuote: true,
		},
	}

	// Send the request.
	resp, err := client.InspectContent(ctx, req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Findings: %v\n", len(resp.Result.Findings))
	for _, v := range resp.GetResult().Findings {
		fmt.Fprintf(w, "Quote: %v\n", v.GetQuote())
		fmt.Fprintf(w, "Infotype Name: %v\n", v.GetInfoType().GetName())
		fmt.Fprintf(w, "Likelihood: %v\n", v.GetLikelihood())
	}
	return nil

}

Java

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.ContentItem;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.Finding;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectContentRequest;
import com.google.privacy.dlp.v2.InspectContentResponse;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.Table;
import com.google.privacy.dlp.v2.Table.Row;
import com.google.privacy.dlp.v2.Value;

public class InspectTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    Table tableToInspect =
        Table.newBuilder()
            .addHeaders(FieldId.newBuilder().setName("name").build())
            .addHeaders(FieldId.newBuilder().setName("phone").build())
            .addRows(
                Row.newBuilder()
                    .addValues(Value.newBuilder().setStringValue("John Doe").build())
                    .addValues(Value.newBuilder().setStringValue("(206) 555-0123").build()))
            .build();

    inspectTable(projectId, tableToInspect);
  }

  // Inspects the provided text.
  public static void inspectTable(String projectId, Table tableToInspect) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the table to be inspected.
      ContentItem item = ContentItem.newBuilder().setTable(tableToInspect).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PHONE_NUMBER").build();

      // Construct the configuration for the Inspect request.
      InspectConfig config =
          InspectConfig.newBuilder().addInfoTypes(infoType).setIncludeQuote(true).build();

      // Construct the Inspect request to be sent by the client.
      InspectContentRequest request =
          InspectContentRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setItem(item)
              .setInspectConfig(config)
              .build();

      // Use the client to send the API request.
      InspectContentResponse response = dlp.inspectContent(request);

      // Parse the response and process results
      System.out.println("Findings: " + response.getResult().getFindingsCount());
      for (Finding f : response.getResult().getFindingsList()) {
        System.out.println("\tQuote: " + f.getQuote());
        System.out.println("\tInfo type: " + f.getInfoType().getName());
        System.out.println("\tLikelihood: " + f.getLikelihood());
      }
    } catch (Exception e) {
      System.out.println("Error during inspectString: \n" + e.toString());
    }
  }
}

Node.js

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The infoTypes of information to match
const infoTypes = [{name: 'PHONE_NUMBER'}];

// Table data
const tableData = {
  headers: [{name: 'name'}, {name: 'phone'}],
  rows: [
    {
      values: [{stringValue: 'John Doe'}, {stringValue: '(206) 555-0123'}],
    },
  ],
};

async function inspectTable() {
  // Specify the table to be inspected.
  const item = {
    table: tableData,
  };

  // Construct the configuration for the Inspect request.
  const inspectConfig = {
    infoTypes: infoTypes,
    includeQuote: true,
  };

  // Construct the Inspect request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectConfig: inspectConfig,
    item: item,
  };

  // Use the client to send the API request.
  const [response] = await dlp.inspectContent(request);

  // Print findings.
  const findings = response.result.findings;
  if (findings.length > 0) {
    console.log(`Findings: ${findings.length}\n`);
    findings.forEach(finding => {
      console.log(`InfoType: ${finding.infoType.name}`);
      console.log(`\tQuote: ${finding.quote}`);
      console.log(`\tLikelihood: ${finding.likelihood} \n`);
    });
  } else {
    console.log('No findings.');
  }
}
inspectTable();

PHP

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\ContentItem;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectContentRequest;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Table;
use Google\Cloud\Dlp\V2\Table\Row;
use Google\Cloud\Dlp\V2\Value;

/**
 * Inspect a table for sensitive content.
 *
 * @param string $projectId         The Google Cloud project id to use as a parent resource.
 */
function inspect_table(string $projectId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    $parent = "projects/$projectId/locations/global";

    // Specify the table to be inspected.
    $tableToDeIdentify = (new Table())
        ->setHeaders([
            (new FieldId())
                ->setName('NAME'),
            (new FieldId())
                ->setName('PHONE'),
        ])
        ->setRows([
            (new Row())->setValues([
                (new Value())
                    ->setStringValue('John Doe'),
                (new Value())
                    ->setStringValue('(206) 555-0123')
            ])
        ]);

    $item = (new ContentItem())
        ->setTable($tableToDeIdentify);

    // Construct the configuration for the Inspect request.
    $phoneNumber = (new InfoType())
        ->setName('PHONE_NUMBER');
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes([$phoneNumber])
        ->setIncludeQuote(true);

    // Run request.
    $inspectContentRequest = (new InspectContentRequest())
        ->setParent($parent)
        ->setInspectConfig($inspectConfig)
        ->setItem($item);
    $response = $dlp->inspectContent($inspectContentRequest);

    // Print the results.
    $findings = $response->getResult()->getFindings();
    if (count($findings) == 0) {
        printf('No findings.' . PHP_EOL);
    } else {
        printf('Findings:' . PHP_EOL);
        foreach ($findings as $finding) {
            printf('  Quote: %s' . PHP_EOL, $finding->getQuote());
            printf('  Info type: %s' . PHP_EOL, $finding->getInfoType()->getName());
            printf('  Likelihood: %s' . PHP_EOL, Likelihood::name($finding->getLikelihood()));
        }
    }
}

Python

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Protección de datos sensibles, consulta las Bibliotecas cliente de Protección de datos sensibles.

Para autenticarte en la Protección de datos sensibles, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from typing import List, Optional

import google.cloud.dlp


def inspect_table(
    project: str,
    data: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[str] = None,
    max_findings: Optional[int] = None,
    include_quote: bool = True,
) -> None:
    """Uses the Data Loss Prevention API to analyze strings for protected data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        data: Json string representing table data.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        include_quote: Boolean for whether to display a quote of the detected
            information in the results.
    Returns:
        None; the response from the API is printed to the terminal.
    Example:
        data = {
            "header":[
                "email",
                "phone number"
            ],
            "rows":[
                [
                    "robertfrost@xyz.com",
                    "4232342345"
                ],
                [
                    "johndoe@pqr.com",
                    "4253458383"
                ]
            ]
        }

        >> $ python inspect_content.py table \
        '{"header": ["email", "phone number"],
        "rows": [["robertfrost@xyz.com", "4232342345"],
        ["johndoe@pqr.com", "4253458383"]]}'
        >>  Quote: robertfrost@xyz.com
            Info type: EMAIL_ADDRESS
            Likelihood: 4
            Quote: johndoe@pqr.com
            Info type: EMAIL_ADDRESS
            Likelihood: 4
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "include_quote": include_quote,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct the `table`. For more details on the table schema, please see
    # https://cloud.google.com/dlp/docs/reference/rest/v2/ContentItem#Table
    headers = [{"name": val} for val in data["header"]]
    rows = []
    for row in data["rows"]:
        rows.append({"values": [{"string_value": cell_val} for cell_val in row]})

    table = {}
    table["headers"] = headers
    table["rows"] = rows
    item = {"table": table}
    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.inspect_content(
        request={"parent": parent, "inspect_config": inspect_config, "item": item}
    )

    # Print out the results.
    if response.result.findings:
        for finding in response.result.findings:
            try:
                if finding.quote:
                    print(f"Quote: {finding.quote}")
            except AttributeError:
                pass
            print(f"Info type: {finding.info_type.name}")
            print(f"Likelihood: {finding.likelihood}")
    else:
        print("No findings.")

REST

Consulta la guía de inicio rápido de JSON para obtener más información sobre el uso de la API de DLP con JSON.

Entrada de JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/content:inspect?key={YOUR_API_KEY}

{
  "item":{
    "table":{
      "headers": [{"name":"name"}, {"name":"phone"}],
      "rows": [{
        "values":[
          {"string_value": "John Doe"},
          {"string_value": "(206) 555-0123"}
        ]}
      ],
    }
  },
  "inspectConfig":{
    "infoTypes":[
      {
        "name":"PHONE_NUMBER"
      }
    ],
    "includeQuote":true
  }
}

Salida de JSON:

{
  "result": {
    "findings": [
     {
      "quote": "(206) 555-0123",
      "infoType": {
       "name": "PHONE_NUMBER"
      },
      "likelihood": "VERY_LIKELY",
      "location": {
         "byteRange": {
          "end": "14"
         },
         "codepointRange": {
          "end": "14"
         },
         "contentLocations": [
          {
           "recordLocation": {
              "fieldId": {
               "name": "phone"
              },
              "tableLocation": {
              }
           }
          }
         ]
      },
      "createTime": "2019-03-08T23:55:10.980Z"
     }
    ]
  }
}

Texto en comparación con texto estructurado

La estructuración del texto puede ayudar a proporcionar contexto. Si se inspecciona la misma solicitud del ejemplo anterior como una string, es decir, como “John Doe, (206) 555-0123”, proporcionaría resultados menos precisos. Esto se debe a que Sensitive Data Protection tiene menos pistas contextuales sobre cuál podría ser el propósito del número. Cuando sea posible, considera analizar tus strings en un objeto de tabla para obtener resultados de análisis más precisos.