Como criar e programar jobs de inspeção de proteção de dados sensíveis

Neste tópico, descrevemos em detalhes como criar um job de inspeção de proteção de dados sensíveis e como programar jobs de inspeção recorrentes criando um acionador de jobs. Para um tutorial rápido sobre como criar um novo acionador de jobs usando a IU de proteção de dados confidenciais, consulte Guia de início rápido: como criar um acionador de jobs de proteção de dados confidenciais.

Sobre jobs de inspeção e gatilhos de jobs

Quando a proteção de dados sensíveis executa uma verificação de inspeção para identificar dados sensíveis, cada verificação é executada como um job. A proteção de dados sensíveis cria e executa um recurso de job sempre que você pede para inspecionar os repositórios de armazenamento do Google Cloud, incluindo buckets do Cloud Storage, tabelas do BigQuery, tipos do Datastore e dados externos.

Para programar jobs de verificação de inspeção de proteção de dados confidenciais, crie acionadores de jobs. Um acionador de jobs automatiza a criação de jobs de proteção de dados sensíveis periodicamente e também pode ser executado sob demanda.

Para saber mais sobre jobs e acionadores de jobs na proteção de dados sensíveis, consulte a página conceitual Jobs e gatilhos de jobs.

Criar um novo job de inspeção

Para criar um novo job de inspeção de proteção de dados sensíveis, faça o seguinte:

Console

Na seção "Proteção de dados sensíveis" do console do Google Cloud, acesse a página Criar job ou gatilho de jobs.

Acessar "Criar job ou gatilho de jobs"

A página Criar job ou gatilho de jobs contém as seguintes seções:

Escolher dados de entrada

Nome

Insira um nome para o job. Use letras, números e hifens. Nomear o job é opcional. Se você não informar um nome, a proteção de dados sensíveis vai atribuir ao job um identificador de número exclusivo.

Local

No menu Tipo de armazenamento, escolha o tipo de repositório que armazena os dados que você quer verificar:

  • Cloud Storage: digite o URL do bucket que você quer verificar ou escolha Incluir/excluir no menu Tipo de local e clique em Procurar para navegar até o bucket ou a subpasta que você quer verificar. Marque a caixa de seleção Verificar pasta recursivamente para verificar o diretório especificado e todos os diretórios contidos. Deixe-a desmarcada para verificar apenas o diretório especificado e não mais profundamente.
  • BigQuery: insira os identificadores do projeto, o conjunto de dados e a tabela que você quer verificar.
  • Datastore: insira os identificadores do projeto, o namespace (opcional) e o tipo que você quer verificar.
  • Híbrido: é possível adicionar rótulos obrigatórios e opcionais e opções para lidar com dados tabulares. Para mais informações, consulte Tipos de metadados que você pode fornecer.

Amostragem

A amostragem é uma forma opcional de economizar recursos, se você tiver uma quantidade muito grande de dados.

Em Amostragem, escolha se você quer verificar todos os dados selecionados ou criar amostras dos dados verificando uma determinada porcentagem. A amostragem funciona de maneira diferente, dependendo do tipo de repositório de armazenamento que você está verificando:

  • Para o BigQuery, é possível criar uma amostra de um subconjunto do total de linhas selecionadas, correspondendo à porcentagem de arquivos especificada a ser incluída na verificação.
  • Para o Cloud Storage, se algum arquivo exceder o tamanho especificado em Tamanho máximo de bytes a ser verificado por arquivo, a proteção de dados sensíveis verificará o arquivo até esse tamanho máximo e, em seguida, avançará para o próximo arquivo.

Para ativar a amostragem, escolha uma das seguintes opções no primeiro menu:

  • Comece a amostragem de cima para baixo: a proteção de dados sensíveis inicia a verificação parcial no início dos dados. Para o BigQuery, isso inicia a verificação na primeira linha. Para o Cloud Storage, isso inicia a verificação no início de cada arquivo e para a verificação depois que a proteção de dados sensíveis é verificada até qualquer tamanho máximo de arquivo especificado.
  • Iniciar amostragem do início aleatório: a proteção de dados confidenciais inicia a verificação parcial em um local aleatório nos dados. Para o BigQuery, isso inicia a verificação em uma linha aleatória. Para o Cloud Storage, essa configuração só se aplica a arquivos que excedam qualquer tamanho máximo especificado. A proteção de dados confidenciais verifica os arquivos com o tamanho máximo na íntegra e os arquivos acima do tamanho máximo até o máximo.

Para realizar uma verificação parcial, também é necessário escolher qual porcentagem dos dados você quer verificar. Use o controle deslizante para definir a porcentagem.

Também é possível restringir os arquivos ou registros a serem verificados por data. Para saber como, consulte Programar, mais adiante neste tópico.

Configuração avançada

Ao criar um job para uma verificação de buckets do Cloud Storage ou tabelas do BigQuery, restrinja a pesquisa especificando uma configuração avançada. Mais especificamente, é possível configurar estes elementos:

  • Arquivos (somente Cloud Storage): os tipos de arquivos a serem verificados, que incluem arquivos de texto, binários e de imagem.
  • Campos de identificação (somente BigQuery): identificadores de linha exclusivos na tabela.
  • Para o Cloud Storage, se algum arquivo exceder o tamanho especificado em Tamanho máximo de bytes a ser verificado por arquivo, a proteção de dados sensíveis verificará o arquivo até esse tamanho máximo e, em seguida, avançará para o próximo arquivo.

Para ativar a amostragem, escolha a porcentagem dos dados que você quer verificar. Use o controle deslizante para definir a porcentagem. Em seguida, escolha uma das seguintes opções no primeiro menu:

  • Comece a amostragem de cima para baixo: a proteção de dados sensíveis inicia a verificação parcial no início dos dados. Para o BigQuery, isso inicia a verificação na primeira linha. Para o Cloud Storage, isso inicia a verificação no início de cada arquivo e para a verificação depois que a proteção de dados sensíveis é verificada até qualquer tamanho máximo de arquivo especificado (veja acima).
  • Iniciar amostragem do início aleatório: a proteção de dados confidenciais inicia a verificação parcial em um local aleatório nos dados. Para o BigQuery, isso inicia a verificação em uma linha aleatória. Para o Cloud Storage, essa configuração só se aplica a arquivos que excedam qualquer tamanho máximo especificado. A proteção de dados confidenciais verifica os arquivos com o tamanho máximo na íntegra e os arquivos acima do tamanho máximo até o máximo.
Arquivos

Para arquivos armazenados no Cloud Storage, especifique os tipos a serem incluídos na verificação em Arquivos.

Escolha entre arquivos binários, de texto, de imagem, CSV, TSV, Microsoft Word, Microsoft Excel, Microsoft Powerpoint, PDF e Apache Avro. Para conferir uma lista completa de extensões de arquivos que a proteção de dados sensíveis pode verificar em buckets do Cloud Storage, consulte FileType. Escolher Binário faz com que a proteção de dados sensíveis verifique os arquivos de tipos que não são reconhecidos.

Campos de identificação

Para tabelas no BigQuery, no campo Campos de identificação, é possível direcionar a proteção de dados sensíveis para incluir os valores das colunas de chave primária da tabela nos resultados. Isso permite vincular as descobertas às linhas da tabela que as contêm.

Insira os nomes das colunas que identificam exclusivamente cada linha na tabela. Se necessário, use a notação de ponto para especificar campos aninhados. Você pode adicionar quantos campos quiser.

Também é necessário ativar a ação Salvar no BigQuery para exportar as descobertas para o BigQuery. Quando as descobertas são exportadas para o BigQuery, cada uma delas contém os respectivos valores dos campos de identificação. Para mais informações, consulte identifyingFields.

Configurar detecção

A seção Configurar detecção é onde você especifica os tipos de dados confidenciais que quer verificar. A conclusão desta seção é opcional. Se você pular esta seção, a proteção de dados sensíveis verificará seus dados em busca de um conjunto padrão de infoTypes.

Modelo

Também é possível usar um modelo de proteção de dados sensíveis para reutilizar as informações de configuração especificadas anteriormente.

Se você já tiver criado um modelo que queira usar, clique no campo Nome do modelo para ver uma lista dos modelos de inspeção. Escolha ou digite o nome do modelo que você quer usar.

Para mais informações sobre como criar modelos, consulte Como criar modelos de inspeção de proteção de dados sensíveis.

InfoTypes

Os detectores InfoType encontram dados confidenciais de um determinado tipo. Por exemplo, o detector de infoType integrado US_SOCIAL_SECURITY_NUMBER de proteção de dados sensíveis encontra números da Previdência Social dos EUA. Além dos detectores de infoType integrados, é possível criar seus próprios detectores de infoType personalizados.

Em InfoTypes, escolha o detector infoType correspondente a um tipo de dados que você quer verificar. Não recomendamos deixar esta seção em branco. Isso faz com que a proteção de dados sensíveis verifique seus dados com um conjunto padrão de infoTypes, que podem incluir infoTypes que você não precisa. Para mais informações sobre cada detector, consulte a referência dos detectores InfoType.

Para mais informações sobre como gerenciar infoTypes integrados e personalizados nesta seção, consulte Gerenciar infoTypes por meio do console do Google Cloud.

Conjuntos de regras de inspeção
Limite de confiança

Sempre que detecta uma possível correspondência para dados sensíveis, a proteção de dados sensíveis atribui a eles um valor de probabilidade em uma escala de "Muito improvável" a "Muito provável". Ao definir um valor de probabilidade aqui, você instrui a proteção de dados sensíveis a fazer a correspondência apenas com dados que correspondem a esse valor ou superior.

O valor padrão "Possível" é suficiente para a maioria das finalidades. Se você normalmente recebe correspondências muito amplas, mova o controle deslizante para a direita. Se você recebe poucas correspondências, mova o controle deslizante para a esquerda.

Quando terminar, clique em Continuar.

Adicionar ações

Na etapa Adicionar ações, selecione uma ou mais ações que você quer que a proteção de dados sensíveis realize após a conclusão do job.

É possível configurar as seguintes ações:

  • Salvar no BigQuery: salve os resultados do job de proteção de dados sensíveis em uma tabela do BigQuery. Antes de visualizar ou analisar os resultados, confira se o job foi concluído.

    Sempre que uma verificação é executada, a proteção de dados sensíveis salva as descobertas na tabela do BigQuery que você especificou. As descobertas exportadas contêm detalhes sobre o local de cada descoberta e a probabilidade de correspondência. Se você quiser que cada descoberta inclua a string que corresponde ao detector de infoType, ative a opção Incluir citação.

    Se você não especificar um ID de tabela, o BigQuery atribuirá um nome padrão a uma nova tabela na primeira vez que a verificação for executada. Se você especificar uma tabela atual, a proteção de dados sensíveis anexará as descobertas da verificação a ela.

    Se as descobertas não forem salvas no BigQuery, os resultados da verificação conterão apenas estatísticas sobre o número e os infoTypes delas.

    Quando os dados são gravados em uma tabela do BigQuery, o faturamento e o uso de cota são aplicados ao projeto que contém a tabela de destino.

  • Publicar no Pub/Sub: publique uma notificação com o nome do job de proteção de dados sensíveis como um atributo para um canal do Pub/Sub. É possível especificar um ou mais tópicos para enviar a mensagem de notificação. Garanta que a conta de serviço de proteção de dados sensíveis que executa o job de verificação tenha acesso de publicação no tópico.

  • Publicar no Security Command Center: publique um resumo dos resultados do job no Security Command Center. Para mais informações, acesse Enviar resultados da verificação da proteção de dados sensíveis ao Security Command Center.

  • Publicar no Dataplex: envie os resultados do job para o Dataplex, o serviço de gerenciamento de metadados do Google Cloud.

  • Notificar por e-mail: envie um e-mail quando o job for concluído. O e-mail vai para os proprietários do projeto do IAM e os Contatos essenciais.

  • Publicar no Cloud Monitoring: envie os resultados da inspeção para o Cloud Monitoring no pacote de operações do Google Cloud.

  • Fazer uma cópia desidentificada: desidentifique todas as descobertas nos dados inspecionados e grave o conteúdo desidentificado em um novo arquivo. É possível usar a cópia desidentificada nos processos comerciais, no lugar dos dados que contêm informações confidenciais. Para mais informações, consulte Criar uma cópia desidentificada dos dados do Cloud Storage usando a proteção de dados sensíveis no Console do Google Cloud.

Para mais informações, consulte Ações.

Quando terminar de selecionar ações, clique em Continuar.

Revisar

A seção Revisar contém um resumo formatado em JSON das configurações do job recém-especificado.

Clique em Criar para criar o job (se não tiver especificado uma programação) e executar o job uma vez. A página de informações do job é exibida, que contém status e outras informações. Se o job estiver em execução no momento, será possível clicar no botão Cancelar para interrompê-lo. Também é possível excluir o job clicando em Excluir.

Para retornar à página principal da Proteção de dados sensíveis, clique na seta Voltar no console do Google Cloud.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using System;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.StorageConfig.Types;

public class JobsCreate
{
    public static DlpJob CreateJob(string projectId, string gcsPath)
    {
        var dlp = DlpServiceClient.Create();

        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet()
                {
                    Url = gcsPath
                }
            },
            TimespanConfig = new TimespanConfig
            {
                EnableAutoPopulationOfTimespanConfig = true
            }
        };

        var inspectConfig = new InspectConfig
        {
            InfoTypes = { new[] { "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER" }.Select(it => new InfoType() { Name = it }) },
            IncludeQuote = true,
            MinLikelihood = Likelihood.Unlikely,
            Limits = new InspectConfig.Types.FindingLimits() { MaxFindingsPerItem = 100 }
        };

        var response = dlp.CreateDlpJob(new CreateDlpJobRequest
        {
            Parent = new LocationName(projectId, "global").ToString(),
            InspectJob = new InspectJobConfig
            {
                InspectConfig = inspectConfig,
                StorageConfig = storageConfig,
            }
        });

        Console.WriteLine($"Job: {response.Name} status: {response.State}");

        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// createJob creates an inspection job
func createJob(w io.Writer, projectID, gcsPath string, infoTypeNames []string) error {
	// projectID := "my-project-id"
	// gcsPath := "gs://" + "your-bucket-name" + "path/to/file.txt";
	// infoTypeNames := []string{"EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER"}

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: &dlppb.CloudStorageOptions{
				FileSet: &dlppb.CloudStorageOptions_FileSet{
					Url: gcsPath,
				},
			},
		},

		// Set autoPopulateTimespan to true to scan only new content.
		TimespanConfig: &dlppb.StorageConfig_TimespanConfig{
			EnableAutoPopulationOfTimespanConfig: true,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types.
	var infoTypes []*dlppb.InfoType
	for _, c := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: c})
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:    infoTypes,
		IncludeQuote: true,

		// The minimum likelihood required before returning a match:
		// See: https://cloud.google.com/dlp/docs/likelihood
		MinLikelihood: dlppb.Likelihood_UNLIKELY,

		// The maximum number of findings to report (0 = server maximum)
		Limits: &dlppb.InspectConfig_FindingLimits{
			MaxFindingsPerItem: 100,
		},
	}

	// Create and send the request.
	req := dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				InspectConfig: inspectConfig,
				StorageConfig: storageConfig,
			},
		},
	}

	// Send the request.
	response, err := client.CreateDlpJob(ctx, &req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Created a Dlp Job %v and Status is: %v", response.Name, response.State)
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.privacy.dlp.v2.StorageConfig.TimespanConfig;
import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class JobsCreate {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createJobs(projectId, gcsPath);
  }

  // Creates a DLP Job
  public static void createJobs(String projectId, String gcsPath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Set autoPopulateTimespan to true to scan only new content
      boolean autoPopulateTimespan = true;
      TimespanConfig timespanConfig =
          TimespanConfig.newBuilder()
              .setEnableAutoPopulationOfTimespanConfig(autoPopulateTimespan)
              .build();

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();
      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .setTimespanConfig(timespanConfig)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());
      // The minimum likelihood required before returning a match:
      // See: https://cloud.google.com/dlp/docs/likelihood
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob createdDlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);
      System.out.println("Job created successfully: " + createdDlpJob.getName());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Initialize google DLP Client
const dlp = new DLP.DlpServiceClient();

async function jobsCreate() {
  // Construct cloud storage configuration
  const cloudStorageConfig = {
    cloudStorageOptions: {
      fileSet: {
        url: cloudFileUrl,
      },
    },
    timespanConfig: {
      enableAutoPopulationOfTimespanConfig: true,
    },
  };

  // Construct inspect job configuration
  const inspectJob = {
    storageConfig: cloudStorageConfig,
  };

  // Construct inspect configuration
  const inspectConfig = {
    infoTypes: [
      {name: 'EMAIL_ADDRESS'},
      {name: 'PERSON_NAME'},
      {name: 'LOCATION'},
      {name: 'PHONE_NUMBER'},
    ],
    includeQuote: true,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.LIKELY,
    excludeInfoTypes: false,
  };

  // Combine configurations into a request for the service.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJob,
    inspectConfig: inspectConfig,
  };

  // Send the request and receive response from the service
  const [response] = await dlp.createDlpJob(request);
  // Print the results
  console.log(`Job created successfully: ${response.name}`);
}

jobsCreate();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\StorageConfig\TimespanConfig;

/**
 * Creates an inspection job with the Cloud Data Loss Prevention API.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsPath           GCS file to be inspected. Example : gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv
 */
function create_job(
    string $callingProjectId,
    string $gcsPath
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Set autoPopulateTimespan to true to scan only new content.
    $timespanConfig = (new TimespanConfig())
        ->setEnableAutoPopulationOfTimespanConfig(true);

    // Specify the GCS file to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsPath));
    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions(($cloudStorageOptions))
        ->setTimespanConfig($timespanConfig);

    // ----- Construct inspection config -----
    $emailAddressInfoType = (new InfoType())
        ->setName('EMAIL_ADDRESS');
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $locationInfoType = (new InfoType())
        ->setName('LOCATION');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$emailAddressInfoType, $personNameInfoType, $locationInfoType, $phoneNumberInfoType];

    // Whether to include the matching string in the response.
    $includeQuote = true;
    // The minimum likelihood required before returning a match.
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // The maximum number of findings to report (0 = server maximum).
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest(100);

    // Create the Inspect configuration object.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote($includeQuote);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Configure the inspection job we want the service to perform.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJobConfig);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Print results.
    printf($job->getName());
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import google.cloud.dlp

def create_dlp_job(
    project: str,
    bucket: str,
    info_types: list[str],
    job_id: str = None,
    max_findings: int = 100,
    auto_populate_timespan: bool = True,
) -> None:
    """Uses the Data Loss Prevention API to create a DLP job.
    Args:
        project: The project id to use as a parent resource.
        bucket: The name of the GCS bucket to scan. This sample scans all
            files in the bucket.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        job_id: The id of the job. If omitted, an id will be randomly generated.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        auto_populate_timespan: Automatically populates time span config start
            and end times in order to scan new content only.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {"file_set": {"url": url}},
        # Time-based configuration for each storage object.
        "timespan_config": {
            # Auto-populate start and end times in order to scan new objects
            # only.
            "enable_auto_population_of_timespan_config": auto_populate_timespan
        },
    }

    # Construct the job definition.
    job = {"inspect_config": inspect_config, "storage_config": storage_config}

    # Call the API.
    response = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": job, "job_id": job_id}
    )

    # Print out the result.
    print(f"Job : {response.name} status: {response.state}")

REST

Um job é representado na API DLP pelo recurso DlpJobs. Para criar um novo job, use o método projects.dlpJobs.create do recurso DlpJob.

Esse JSON de amostra pode ser enviado em uma solicitação POST para o endpoint REST de proteção de dados sensíveis especificado. Este JSON de exemplo demonstra como criar um job na proteção de dados sensíveis. O job é uma verificação de inspeção do Datastore.

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Uma solicitação bem-sucedida, mesmo se for criada na API Explorer, criará um job. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Entrada JSON:

{
  "inspectJob": {
    "storageConfig": {
      "bigQueryOptions": {
        "tableReference": {
          "projectId": "bigquery-public-data",
          "datasetId": "san_francisco_sfpd_incidents",
          "tableId": "sfpd_incidents"
        }
      },
      "timespanConfig": {
        "startTime": "2020-01-01T00:00:01Z",
        "endTime": "2020-01-31T23:59:59Z",
        "timestampField": {
          "name": "timestamp"
        }
      }
    },
    "inspectConfig": {
      "infoTypes": [
        {
          "name": "PERSON_NAME"
        },
        {
          "name": "STREET_ADDRESS"
        }
      ],
      "excludeInfoTypes": false,
      "includeQuote": true,
      "minLikelihood": "LIKELY"
    },
    "actions": [
      {
        "saveFindings": {
          "outputConfig": {
            "table": {
              "projectId": "[PROJECT-ID]",
              "datasetId": "[DATASET-ID]"
            }
          }
        }
      }
    ]
  }
}

Saída JSON:

A resposta a seguir indica que o job foi criado com sucesso.

{
  "name": "projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type": "INSPECT_JOB",
  "state": "PENDING",
  "inspectDetails": {
    "requestedOptions": {
      "snapshotInspectTemplate": {},
      "jobConfig": {
        "storageConfig": {
          "bigQueryOptions": {
            "tableReference": {
              "projectId": "bigquery-public-data",
              "datasetId": "san_francisco_sfpd_incidents",
              "tableId": "sfpd_incidents"
            }
          },
          "timespanConfig": {
            "startTime": "2020-01-01T00:00:01Z",
            "endTime": "2020-01-31T23:59:59Z",
            "timestampField": {
              "name": "timestamp"
            }
          }
        },
        "inspectConfig": {
          "infoTypes": [
            {
              "name": "PERSON_NAME"
            },
            {
              "name": "STREET_ADDRESS"
            }
          ],
          "minLikelihood": "LIKELY",
          "limits": {},
          "includeQuote": true
        },
        "actions": [
          {
            "saveFindings": {
              "outputConfig": {
                "table": {
                  "projectId": "[PROJECT-ID]",
                  "datasetId": "[DATASET-ID]",
                  "tableId": "[TABLE-ID]"
                }
              }
            }
          }
        ]
      }
    },
    "result": {}
  },
  "createTime": "2020-07-10T07:26:33.643Z"
}

Criar um novo gatilho de job

Para criar um novo acionador de job de proteção de dados sensíveis:

Console

Na seção "Proteção de dados sensíveis" do console do Google Cloud, acesse a página Criar job ou gatilho de jobs.

Acessar "Criar job ou gatilho de jobs"

A página Criar job ou gatilho de jobs contém as seguintes seções:

Escolher dados de entrada

Nome

Insira um nome para o gatilho de jobs. Use letras, números e hifens. Nomear o gatilho de jobs é opcional. Se você não informar um nome, a proteção de dados sensíveis dará ao acionador de jobs um identificador de número exclusivo.

Local

No menu Tipo de armazenamento, escolha o tipo de repositório que armazena os dados que você quer verificar:

  • Cloud Storage: digite o URL do bucket que você quer verificar ou escolha Incluir/excluir no menu Tipo de local e clique em Procurar para navegar até o bucket ou a subpasta que você quer verificar. Marque a caixa de seleção Verificar pasta recursivamente para verificar o diretório especificado e todos os diretórios contidos. Deixe-a desmarcada para verificar apenas o diretório especificado e não mais profundamente.
  • BigQuery: insira os identificadores do projeto, o conjunto de dados e a tabela que você quer verificar.
  • Datastore: insira os identificadores do projeto, o namespace (opcional) e o tipo que você quer verificar.

Amostragem

A amostragem é uma forma opcional de economizar recursos, se você tiver uma quantidade muito grande de dados.

Em Amostragem, escolha se você quer verificar todos os dados selecionados ou criar amostras dos dados verificando uma determinada porcentagem. A amostragem funciona de maneira diferente, dependendo do tipo de repositório de armazenamento que você está verificando:

  • Para o BigQuery, é possível criar uma amostra de um subconjunto do total de linhas selecionadas, correspondendo à porcentagem de arquivos especificada a ser incluída na verificação.
  • Para o Cloud Storage, se algum arquivo exceder o tamanho especificado em Tamanho máximo de bytes a ser verificado por arquivo, a proteção de dados sensíveis verificará o arquivo até esse tamanho máximo e, em seguida, avançará para o próximo arquivo.

Para ativar a amostragem, escolha uma das seguintes opções no primeiro menu:

  • Comece a amostragem de cima para baixo: a proteção de dados sensíveis inicia a verificação parcial no início dos dados. Para o BigQuery, isso inicia a verificação na primeira linha. Para o Cloud Storage, isso inicia a verificação no início de cada arquivo e para a verificação depois que a proteção de dados sensíveis é verificada até qualquer tamanho máximo de arquivo especificado (veja acima).
  • Iniciar amostragem do início aleatório: a proteção de dados confidenciais inicia a verificação parcial em um local aleatório nos dados. Para o BigQuery, isso inicia a verificação em uma linha aleatória. Para o Cloud Storage, essa configuração só se aplica a arquivos que excedam qualquer tamanho máximo especificado. A proteção de dados confidenciais verifica os arquivos com o tamanho máximo na íntegra e os arquivos acima do tamanho máximo até o máximo.

Para realizar uma verificação parcial, também é necessário escolher qual porcentagem dos dados você quer verificar. Use o controle deslizante para definir a porcentagem.

Configuração avançada

Ao criar um gatilho de jobs para uma verificação de buckets do Cloud Storage ou tabelas do BigQuery, restrinja a pesquisa especificando uma configuração avançada. Mais especificamente, é possível configurar estes elementos:

  • Arquivos (somente Cloud Storage): os tipos de arquivos a serem verificados, que incluem arquivos de texto, binários e de imagem.
  • Campos de identificação (somente BigQuery): identificadores de linha exclusivos na tabela.
  • Para o Cloud Storage, se algum arquivo exceder o tamanho especificado em Tamanho máximo de bytes a ser verificado por arquivo, a proteção de dados sensíveis verificará o arquivo até esse tamanho máximo e, em seguida, avançará para o próximo arquivo.

Para ativar a amostragem, escolha a porcentagem dos dados que você quer verificar. Use o controle deslizante para definir a porcentagem. Em seguida, escolha uma das seguintes opções no primeiro menu:

  • Comece a amostragem de cima para baixo: a proteção de dados sensíveis inicia a verificação parcial no início dos dados. Para o BigQuery, isso inicia a verificação na primeira linha. Para o Cloud Storage, isso inicia a verificação no início de cada arquivo e para a verificação depois que a proteção de dados sensíveis é verificada até qualquer tamanho máximo de arquivo especificado (veja acima).
  • Iniciar amostragem do início aleatório: a proteção de dados confidenciais inicia a verificação parcial em um local aleatório nos dados. Para o BigQuery, isso inicia a verificação em uma linha aleatória. Para o Cloud Storage, essa configuração só se aplica a arquivos que excedam qualquer tamanho máximo especificado. A proteção de dados confidenciais verifica os arquivos com o tamanho máximo na íntegra e os arquivos acima do tamanho máximo até o máximo.

Arquivos

Para arquivos armazenados no Cloud Storage, especifique os tipos a serem incluídos na verificação em Arquivos.

Escolha entre arquivos binários, de texto, de imagem, do Microsoft Word, do Microsoft Excel, do Microsoft Powerpoint, de PDF e do Apache Avro. Para ver uma lista completa de extensões de arquivo que a proteção de dados sensíveis pode verificar nos buckets do Cloud Storage, consulte FileType. Escolher Binário faz com que a proteção de dados sensíveis verifique os arquivos de tipos que não são reconhecidos.

Campos de identificação

Para tabelas no BigQuery, no campo Campos de identificação, é possível direcionar a proteção de dados sensíveis para incluir os valores das colunas de chave primária da tabela nos resultados. Isso permite vincular as descobertas às linhas da tabela que as contêm.

Insira os nomes das colunas que identificam exclusivamente cada linha na tabela. Se necessário, use a notação de ponto para especificar campos aninhados. Você pode adicionar quantos campos quiser.

Também é necessário ativar a ação Salvar no BigQuery para exportar as descobertas para o BigQuery. Quando as descobertas são exportadas para o BigQuery, cada uma delas contém os respectivos valores dos campos de identificação. Para mais informações, consulte identifyingFields.

Configurar detecção

A seção Configurar detecção é onde você especifica os tipos de dados confidenciais que quer verificar. A conclusão desta seção é opcional. Se você pular esta seção, a proteção de dados sensíveis verificará seus dados em busca de um conjunto padrão de infoTypes.

Modelo

Também é possível usar um modelo de proteção de dados sensíveis para reutilizar as informações de configuração especificadas anteriormente.

Se você já tiver criado um modelo que queira usar, clique no campo Nome do modelo para ver uma lista dos modelos de inspeção. Escolha ou digite o nome do modelo que você quer usar.

Para mais informações sobre como criar modelos, consulte Como criar modelos de inspeção de proteção de dados sensíveis.

InfoTypes

Os detectores InfoType encontram dados confidenciais de um determinado tipo. Por exemplo, o detector de infoType integrado US_SOCIAL_SECURITY_NUMBER de proteção de dados sensíveis encontra números da Previdência Social dos EUA. Além dos detectores de infoType integrados, é possível criar seus próprios detectores de infoType personalizados.

Em InfoTypes, escolha o detector infoType correspondente a um tipo de dados que você quer verificar. Também é possível deixar esse campo em branco para verificar todos os infoTypes padrão. Mais informações sobre cada detector são fornecidas na referência de detectores de InfoType.

Também é possível adicionar detectores de infoType personalizados na seção infoTypes personalizados e personalizar os detectores de infoType integrados e personalizados na seção Conjuntos de regras de inspeção.

InfoTypes personalizados
Conjuntos de regras de inspeção
Limite de confiança

Sempre que detecta uma possível correspondência para dados sensíveis, a proteção de dados sensíveis atribui a eles um valor de probabilidade em uma escala de "Muito improvável" a "Muito provável". Ao definir um valor de probabilidade aqui, você instrui a proteção de dados sensíveis a fazer a correspondência apenas com dados que correspondem a esse valor ou superior.

O valor padrão "Possível" é suficiente para a maioria das finalidades. Se você normalmente recebe correspondências muito amplas, mova o controle deslizante para a direita. Se você recebe poucas correspondências, mova o controle deslizante para a esquerda.

Quando terminar, clique em Continuar.

Adicionar ações

Na etapa Adicionar ações, selecione uma ou mais ações que você quer que a proteção de dados sensíveis realize após a conclusão do job.

É possível configurar as seguintes ações:

  • Salvar no BigQuery: salve os resultados do job de proteção de dados sensíveis em uma tabela do BigQuery. Antes de visualizar ou analisar os resultados, confira se o job foi concluído.

    Sempre que uma verificação é executada, a proteção de dados sensíveis salva as descobertas na tabela do BigQuery que você especificou. As descobertas exportadas contêm detalhes sobre o local de cada descoberta e a probabilidade de correspondência. Se você quiser que cada descoberta inclua a string que corresponde ao detector de infoType, ative a opção Incluir citação.

    Se você não especificar um ID de tabela, o BigQuery atribuirá um nome padrão a uma nova tabela na primeira vez que a verificação for executada. Se você especificar uma tabela atual, a proteção de dados sensíveis anexará as descobertas da verificação a ela.

    Se as descobertas não forem salvas no BigQuery, os resultados da verificação conterão apenas estatísticas sobre o número e os infoTypes delas.

    Quando os dados são gravados em uma tabela do BigQuery, o faturamento e o uso de cota são aplicados ao projeto que contém a tabela de destino.

  • Publicar no Pub/Sub: publique uma notificação com o nome do job de proteção de dados sensíveis como um atributo para um canal do Pub/Sub. É possível especificar um ou mais tópicos para enviar a mensagem de notificação. Garanta que a conta de serviço de proteção de dados sensíveis que executa o job de verificação tenha acesso de publicação no tópico.

  • Publicar no Security Command Center: publique um resumo dos resultados do job no Security Command Center. Para mais informações, acesse Enviar resultados da verificação da proteção de dados sensíveis ao Security Command Center.

  • Publicar no Dataplex: envie os resultados do job para o Dataplex, o serviço de gerenciamento de metadados do Google Cloud.

  • Notificar por e-mail: envie um e-mail quando o job for concluído. O e-mail vai para os proprietários do projeto do IAM e os Contatos essenciais.

  • Publicar no Cloud Monitoring: envie os resultados da inspeção para o Cloud Monitoring no pacote de operações do Google Cloud.

  • Fazer uma cópia desidentificada: desidentifique todas as descobertas nos dados inspecionados e grave o conteúdo desidentificado em um novo arquivo. É possível usar a cópia desidentificada nos processos comerciais, no lugar dos dados que contêm informações confidenciais. Para mais informações, consulte Criar uma cópia desidentificada dos dados do Cloud Storage usando a proteção de dados sensíveis no Console do Google Cloud.

Para mais informações, consulte Ações.

Quando terminar de selecionar ações, clique em Continuar.

Programar

Na seção Programar, é possível fazer duas coisas:

  • Especificar período: essa opção limita os arquivos ou as linhas a serem verificados por data. Clique em Hora de início para especificar o carimbo de data/hora mais antigo do arquivo a ser incluído. Deixe esse valor em branco para especificar todos os arquivos. Clique em Hora de término para especificar o carimbo de data/hora mais recente do arquivo a ser incluído. Deixe esse valor em branco para não especificar um limite máximo de carimbo de data/hora.
  • Criar um acionador para executar o job em uma programação periódica: essa opção cria o acionador de jobs e o define para executar o job especificado em uma programação periódica. O valor padrão também é o valor mínimo: 24 horas. O valor máximo é 60 dias. Se você quiser que a proteção de dados sensíveis verifique apenas novos arquivos ou linhas, marque a caixa de seleção Limitar verificações apenas a conteúdo novo.

Revisar

A seção Revisar contém um resumo formatado em JSON das configurações do job recém-especificado.

Clique em Criar para criar o gatilho de jobs (se tiver especificado uma programação). A página de informações do gatilho de jobs é exibida, contendo status e outras informações. Se o job estiver em execução no momento, será possível clicar no botão Cancelar para interrompê-lo. Também é possível excluir o acionador de jobs clicando em Excluir.

Para retornar à página principal da Proteção de dados sensíveis, clique na seta Voltar no console do Google Cloud.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using System;
using System.Collections.Generic;
using static Google.Cloud.Dlp.V2.CloudStorageOptions.Types;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;
using static Google.Cloud.Dlp.V2.JobTrigger.Types;
using static Google.Cloud.Dlp.V2.StorageConfig.Types;

public class TriggersCreate
{
    public static JobTrigger Create(
        string projectId,
        string bucketName,
        Likelihood minLikelihood,
        int maxFindings,
        bool autoPopulateTimespan,
        int scanPeriod,
        IEnumerable<InfoType> infoTypes,
        string triggerId,
        string displayName,
        string description)
    {
        var dlp = DlpServiceClient.Create();

        var jobConfig = new InspectJobConfig
        {
            InspectConfig = new InspectConfig
            {
                MinLikelihood = minLikelihood,
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                InfoTypes = { infoTypes }
            },
            StorageConfig = new StorageConfig
            {
                CloudStorageOptions = new CloudStorageOptions
                {
                    FileSet = new FileSet
                    {
                        Url = $"gs://{bucketName}/*"
                    }
                },
                TimespanConfig = new TimespanConfig
                {
                    EnableAutoPopulationOfTimespanConfig = autoPopulateTimespan
                }
            }
        };

        var jobTrigger = new JobTrigger
        {
            Triggers =
            {
                new Trigger
                {
                    Schedule = new Schedule
                    {
                        RecurrencePeriodDuration = new Google.Protobuf.WellKnownTypes.Duration
                        {
                            Seconds = scanPeriod * 60 * 60 * 24
                        }
                    }
                }
            },
            InspectJob = jobConfig,
            Status = Status.Healthy,
            DisplayName = displayName,
            Description = description
        };

        var response = dlp.CreateJobTrigger(
            new CreateJobTriggerRequest
            {
                Parent = new LocationName(projectId, "global").ToString(),
                JobTrigger = jobTrigger,
                TriggerId = triggerId
            });

        Console.WriteLine($"Successfully created trigger {response.Name}");
        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"github.com/golang/protobuf/ptypes/duration"
)

// createTrigger creates a trigger with the given configuration.
func createTrigger(w io.Writer, projectID string, triggerID, displayName, description, bucketName string, infoTypeNames []string) error {
	// projectID := "my-project-id"
	// triggerID := "my-trigger"
	// displayName := "My Trigger"
	// description := "My trigger description"
	// bucketName := "my-bucket"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}

	// Create a configured request.
	req := &dlppb.CreateJobTriggerRequest{
		Parent:    fmt.Sprintf("projects/%s/locations/global", projectID),
		TriggerId: triggerID,
		JobTrigger: &dlppb.JobTrigger{
			DisplayName: displayName,
			Description: description,
			Status:      dlppb.JobTrigger_HEALTHY,
			// Triggers control when the job will start.
			Triggers: []*dlppb.JobTrigger_Trigger{
				{
					Trigger: &dlppb.JobTrigger_Trigger_Schedule{
						Schedule: &dlppb.Schedule{
							Option: &dlppb.Schedule_RecurrencePeriodDuration{
								RecurrencePeriodDuration: &duration.Duration{
									Seconds: 10 * 60 * 60 * 24, // 10 days in seconds.
								},
							},
						},
					},
				},
			},
			// Job configures the job to run when the trigger runs.
			Job: &dlppb.JobTrigger_InspectJob{
				InspectJob: &dlppb.InspectJobConfig{
					InspectConfig: &dlppb.InspectConfig{
						InfoTypes:     infoTypes,
						MinLikelihood: dlppb.Likelihood_POSSIBLE,
						Limits: &dlppb.InspectConfig_FindingLimits{
							MaxFindingsPerRequest: 10,
						},
					},
					StorageConfig: &dlppb.StorageConfig{
						Type: &dlppb.StorageConfig_CloudStorageOptions{
							CloudStorageOptions: &dlppb.CloudStorageOptions{
								FileSet: &dlppb.CloudStorageOptions_FileSet{
									Url: "gs://" + bucketName + "/*",
								},
							},
						},
						// Time-based configuration for each storage object. See more at
						// https://cloud.google.com/dlp/docs/reference/rest/v2/InspectJobConfig#TimespanConfig
						TimespanConfig: &dlppb.StorageConfig_TimespanConfig{
							// Auto-populate start and end times in order to scan new objects only.
							EnableAutoPopulationOfTimespanConfig: true,
						},
					},
				},
			},
		},
	}

	// Send the request.
	resp, err := client.CreateJobTrigger(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateJobTrigger: %w", err)
	}
	fmt.Fprintf(w, "Successfully created trigger: %v", resp.GetName())
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateJobTriggerRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.Schedule;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.privacy.dlp.v2.StorageConfig.TimespanConfig;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class TriggersCreate {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createTrigger(projectId, gcsPath);
  }

  public static void createTrigger(String projectId, String gcsPath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Set autoPopulateTimespan to true to scan only new content
      boolean autoPopulateTimespan = true;
      TimespanConfig timespanConfig =
          TimespanConfig.newBuilder()
              .setEnableAutoPopulationOfTimespanConfig(autoPopulateTimespan)
              .build();

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();
      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .setTimespanConfig(timespanConfig)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      InspectConfig inspectConfig = InspectConfig.newBuilder().addAllInfoTypes(infoTypes).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .build();

      // Set scanPeriod to the number of days between scans (minimum: 1 day)
      int scanPeriod = 1;

      // Optionally set a display name of max 100 chars and a description of max 250 chars
      String displayName = "Daily Scan";
      String description = "A daily inspection for personally identifiable information.";

      // Schedule scan of GCS bucket every scanPeriod number of days (minimum = 1 day)
      Duration duration = Duration.newBuilder().setSeconds(scanPeriod * 24 * 3600).build();
      Schedule schedule = Schedule.newBuilder().setRecurrencePeriodDuration(duration).build();
      JobTrigger.Trigger trigger = JobTrigger.Trigger.newBuilder().setSchedule(schedule).build();
      JobTrigger jobTrigger =
          JobTrigger.newBuilder()
              .setInspectJob(inspectJobConfig)
              .setDisplayName(displayName)
              .setDescription(description)
              .setStatus(JobTrigger.Status.HEALTHY)
              .addTriggers(trigger)
              .build();

      // Create scan request to be sent by client
      CreateJobTriggerRequest createJobTriggerRequest =
          CreateJobTriggerRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setJobTrigger(jobTrigger)
              .build();

      // Send the scan request and process the response
      JobTrigger createdJobTrigger = dlpServiceClient.createJobTrigger(createJobTriggerRequest);

      System.out.println("Created Trigger: " + createdJobTrigger.getName());
      System.out.println("Display Name: " + createdJobTrigger.getDisplayName());
      System.out.println("Description: " + createdJobTrigger.getDescription());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// (Optional) The name of the trigger to be created.
// const triggerId = 'my-trigger';

// (Optional) A display name for the trigger to be created
// const displayName = 'My Trigger';

// (Optional) A description for the trigger to be created
// const description = "This is a sample trigger.";

// The name of the bucket to scan.
// const bucketName = 'YOUR-BUCKET';

// Limit scan to new content only.
// const autoPopulateTimespan = true;

// How often to wait between scans, in days (minimum = 1 day)
// const scanPeriod = 1;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

async function createTrigger() {
  // Get reference to the bucket to be inspected
  const storageItem = {
    cloudStorageOptions: {
      fileSet: {url: `gs://${bucketName}/*`},
    },
    timeSpanConfig: {
      enableAutoPopulationOfTimespanConfig: autoPopulateTimespan,
    },
  };

  // Construct job to be triggered
  const job = {
    inspectConfig: {
      infoTypes: infoTypes,
      minLikelihood: minLikelihood,
      limits: {
        maxFindingsPerRequest: maxFindings,
      },
    },
    storageConfig: storageItem,
  };

  // Construct trigger creation request
  const request = {
    parent: `projects/${projectId}/locations/global`,
    jobTrigger: {
      inspectJob: job,
      displayName: displayName,
      description: description,
      triggers: [
        {
          schedule: {
            recurrencePeriodDuration: {
              seconds: scanPeriod * 60 * 60 * 24, // Trigger the scan daily
            },
          },
        },
      ],
      status: 'HEALTHY',
    },
    triggerId: triggerId,
  };

  // Run trigger creation request
  const [trigger] = await dlp.createJobTrigger(request);
  console.log(`Successfully created trigger ${trigger.name}.`);
}

createTrigger();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateJobTriggerRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\JobTrigger;
use Google\Cloud\Dlp\V2\JobTrigger\Status;
use Google\Cloud\Dlp\V2\JobTrigger\Trigger;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Schedule;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\StorageConfig\TimespanConfig;
use Google\Protobuf\Duration;

/**
 * Create a Data Loss Prevention API job trigger.
 *
 * @param string $callingProjectId     The project ID to run the API call under
 * @param string $bucketName           The name of the bucket to scan
 * @param string $triggerId            (Optional) The name of the trigger to be created
 * @param string $displayName          (Optional) The human-readable name to give the trigger
 * @param string $description          (Optional) A description for the trigger to be created
 * @param int    $scanPeriod           (Optional) How often to wait between scans, in days (minimum = 1 day)
 * @param bool   $autoPopulateTimespan (Optional) Automatically limit scan to new content only
 * @param int    $maxFindings          (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function create_trigger(
    string $callingProjectId,
    string $bucketName,
    string $triggerId,
    string $displayName,
    string $description,
    int $scanPeriod,
    bool $autoPopulateTimespan,
    int $maxFindings
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // ----- Construct job config -----
    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$personNameInfoType, $phoneNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Create the inspectConfig object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Create triggers
    $duration = (new Duration())
        ->setSeconds($scanPeriod * 60 * 60 * 24);

    $schedule = (new Schedule())
        ->setRecurrencePeriodDuration($duration);

    $triggerObject = (new Trigger())
        ->setSchedule($schedule);

    // Create the storageConfig object
    $fileSet = (new FileSet())
        ->setUrl('gs://' . $bucketName . '/*');

    $storageOptions = (new CloudStorageOptions())
        ->setFileSet($fileSet);

    // Auto-populate start and end times in order to scan new objects only.
    $timespanConfig = (new TimespanConfig())
        ->setEnableAutoPopulationOfTimespanConfig($autoPopulateTimespan);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($storageOptions)
        ->setTimespanConfig($timespanConfig);

    // Construct the jobConfig object
    $jobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig);

    // ----- Construct trigger object -----
    $jobTriggerObject = (new JobTrigger())
        ->setTriggers([$triggerObject])
        ->setInspectJob($jobConfig)
        ->setStatus(Status::HEALTHY)
        ->setDisplayName($displayName)
        ->setDescription($description);

    // Run trigger creation request
    $parent = $dlp->locationName($callingProjectId, 'global');
    $createJobTriggerRequest = (new CreateJobTriggerRequest())
        ->setParent($parent)
        ->setJobTrigger($jobTriggerObject)
        ->setTriggerId($triggerId);
    $trigger = $dlp->createJobTrigger($createJobTriggerRequest);

    // Print results
    printf('Successfully created trigger %s' . PHP_EOL, $trigger->getName());
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from typing import Optional

import google.cloud.dlp

def create_trigger(
    project: str,
    bucket: str,
    scan_period_days: int,
    info_types: List[str],
    trigger_id: Optional[str] = None,
    display_name: Optional[str] = None,
    description: Optional[str] = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    auto_populate_timespan: Optional[bool] = False,
) -> None:
    """Creates a scheduled Data Loss Prevention API inspect_content trigger.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket to scan. This sample scans all
            files in the bucket using a wildcard.
        scan_period_days: How often to repeat the scan, in days.
            The minimum is 1 day.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        trigger_id: The id of the trigger. If omitted, an id will be randomly
            generated.
        display_name: The optional display name of the trigger.
        description: The optional description of the trigger.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        auto_populate_timespan: Automatically populates time span config start
            and end times in order to scan new content only.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {"file_set": {"url": url}},
        # Time-based configuration for each storage object.
        "timespan_config": {
            # Auto-populate start and end times in order to scan new objects
            # only.
            "enable_auto_population_of_timespan_config": auto_populate_timespan
        },
    }

    # Construct the job definition.
    job = {"inspect_config": inspect_config, "storage_config": storage_config}

    # Construct the schedule definition:
    schedule = {
        "recurrence_period_duration": {"seconds": scan_period_days * 60 * 60 * 24}
    }

    # Construct the trigger definition.
    job_trigger = {
        "inspect_job": job,
        "display_name": display_name,
        "description": description,
        "triggers": [{"schedule": schedule}],
        "status": google.cloud.dlp_v2.JobTrigger.Status.HEALTHY,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_job_trigger(
        request={"parent": parent, "job_trigger": job_trigger, "trigger_id": trigger_id}
    )

    print(f"Successfully created trigger {response.name}")

REST

Um gatilho de jobs é representado na API DLP pelo recurso JobTrigger. Crie um novo gatilho de jobs usando o JobTrigger do método projects.jobTriggers.create do recurso.

Esse JSON de amostra pode ser enviado em uma solicitação POST para o endpoint REST de proteção de dados sensíveis especificado. Este JSON de exemplo demonstra como criar um acionador de jobs na proteção de dados sensíveis. O job que será iniciado por esse gatilho é uma verificação de inspeção do Datastore. O acionador de jobs criado é executado a cada 86.400 segundos (ou 24 horas).

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Uma solicitação bem-sucedida, mesmo se for criada na API Explorer, criará um novo gatilho de jobs programado. Para informações gerais sobre como usar JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Entrada JSON:

{
  "jobTrigger":{
    "displayName":"JobTrigger1",
    "description":"Starts an inspection of a Datastore kind",
    "triggers":[
      {
        "schedule":{
          "recurrencePeriodDuration":"86400s"
        }
      }
    ],
    "status":"HEALTHY",
    "inspectJob":{
      "storageConfig":{
        "datastoreOptions":{
          "kind":{
            "name":"Example-Kind"
          },
          "partitionId":{
            "projectId":"[PROJECT_ID]",
            "namespaceId":"[NAMESPACE_ID]"
          }
        }
      },
      "inspectConfig":{
        "infoTypes":[
          {
            "name":"PHONE_NUMBER"
          }
        ],
        "excludeInfoTypes":false,
        "includeQuote":true,
        "minLikelihood":"LIKELY"
      },
      "actions":[
        {
          "saveFindings":{
            "outputConfig":{
              "table":{
                "projectId":"[PROJECT_ID]",
                "datasetId":"[BIGQUERY_DATASET_NAME]",
                "tableId":"[BIGQUERY_TABLE_NAME]"
              }
            }
          }
        }
      ]
    }
  }
}

Saída JSON:

A saída abaixo indica que o acionador de job foi criado com sucesso.

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "displayName":"JobTrigger1",
  "description":"Starts an inspection of a Datastore kind",
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "partitionId":{
          "projectId":"[PROJECT_ID]",
          "namespaceId":"[NAMESPACE_ID]"
        },
        "kind":{
          "name":"Example-Kind"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "minLikelihood":"LIKELY",
      "limits":{

      },
      "includeQuote":true
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT_ID]",
              "datasetId":"[BIGQUERY_DATASET_NAME]",
              "tableId":"[BIGQUERY_TABLE_NAME]"
            }
          }
        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2018-11-30T01:52:41.171857Z",
  "updateTime":"2018-11-30T01:52:41.171857Z",
  "status":"HEALTHY"
}

Listar todos os jobs

Para listar todos os jobs do projeto atual:

Console

  1. No console do Google Cloud, acesse a página "Proteção de dados sensíveis".

    Acessar a proteção de dados sensíveis

  2. Clique na guia Inspeção e, em seguida, na subguia Inspecionar jobs.

O console exibe uma lista de todos os jobs do projeto atual, incluindo os identificadores de job, o estado, o horário de criação e o horário de término. É possível acessar mais informações sobre qualquer job, incluindo um resumo dos resultados, clicando no identificador.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Api.Gax;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;

public class JobsList
{
    public static PagedEnumerable<ListDlpJobsResponse, DlpJob> ListDlpJobs(string projectId, string filter, DlpJobType jobType)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.ListDlpJobs(new ListDlpJobsRequest
        {
            Parent = new LocationName(projectId, "global").ToString(),
            Filter = filter,
            Type = jobType
        });

        // Uncomment to print jobs
        // foreach (var job in response)
        // {
        //     Console.WriteLine($"Job: {job.Name} status: {job.State}");
        // }

        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"google.golang.org/api/iterator"
)

// listJobs lists jobs matching the given optional filter and optional jobType.
func listJobs(w io.Writer, projectID, filter, jobType string) error {
	// projectID := "my-project-id"
	// filter := "`state` = FINISHED"
	// jobType := "RISK_ANALYSIS_JOB"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a configured request.
	req := &dlppb.ListDlpJobsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Filter: filter,
		Type:   dlppb.DlpJobType(dlppb.DlpJobType_value[jobType]),
	}
	// Send the request and iterate over the results.
	it := client.ListDlpJobs(ctx, req)
	for {
		j, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("Next: %w", err)
		}
		fmt.Fprintf(w, "Job %v status: %v\n", j.GetName(), j.GetState())
	}
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.DlpJobType;
import com.google.privacy.dlp.v2.ListDlpJobsRequest;
import com.google.privacy.dlp.v2.LocationName;
import java.io.IOException;

public class JobsList {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    listJobs(projectId);
  }

  // Lists DLP jobs
  public static void listJobs(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the request to be sent by the client.
      // For more info on filters and job types,
      // see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
      ListDlpJobsRequest listDlpJobsRequest =
          ListDlpJobsRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setFilter("state=DONE")
              .setType(DlpJobType.valueOf("INSPECT_JOB"))
              .build();

      // Send the request to list jobs and process the response
      DlpServiceClient.ListDlpJobsPagedResponse response =
          dlpServiceClient.listDlpJobs(listDlpJobsRequest);

      System.out.println("DLP jobs found:");
      for (DlpJob dlpJob : response.getPage().getValues()) {
        System.out.println(dlpJob.getName() + " -- " + dlpJob.getState());
      }
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The filter expression to use
// For more information and filter syntax, see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
// const filter = `state=DONE`;

// The type of job to list (either 'INSPECT_JOB' or 'RISK_ANALYSIS_JOB')
// const jobType = 'INSPECT_JOB';
async function listJobs() {
  // Construct request for listing DLP scan jobs
  const request = {
    parent: `projects/${projectId}/locations/global`,
    filter: filter,
    type: jobType,
  };

  // Run job-listing request
  const [jobs] = await dlp.listDlpJobs(request);
  jobs.forEach(job => {
    console.log(`Job ${job.name} status: ${job.state}`);
  });
}

listJobs();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\DlpJobType;
use Google\Cloud\Dlp\V2\ListDlpJobsRequest;

/**
 * List Data Loss Prevention API jobs corresponding to a given filter.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $filter            The filter expression to use
 */
function list_jobs(string $callingProjectId, string $filter): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // The type of job to list (either 'INSPECT_JOB' or 'REDACT_JOB')
    $jobType = DlpJobType::INSPECT_JOB;

    // Run job-listing request
    // For more information and filter syntax,
    // @see https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs/list
    $parent = "projects/$callingProjectId/locations/global";
    $listDlpJobsRequest = (new ListDlpJobsRequest())
        ->setParent($parent)
        ->setFilter($filter)
        ->setType($jobType);
    $response = $dlp->listDlpJobs($listDlpJobsRequest);

    // Print job list
    $jobs = $response->iterateAllElements();
    foreach ($jobs as $job) {
        printf('Job %s status: %s' . PHP_EOL, $job->getName(), $job->getState());
        $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();

        if ($job->getState() == JobState::DONE) {
            if (count($infoTypeStats) > 0) {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of type %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            } else {
                print('  No findings.' . PHP_EOL);
            }
        }
    }
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


from typing import Optional

import google.cloud.dlp

def list_dlp_jobs(
    project: str, filter_string: Optional[str] = None, job_type: Optional[str] = None
) -> None:
    """Uses the Data Loss Prevention API to lists DLP jobs that match the
        specified filter in the request.
    Args:
        project: The project id to use as a parent resource.
        filter: (Optional) Allows filtering.
            Supported syntax:
            * Filter expressions are made up of one or more restrictions.
            * Restrictions can be combined by 'AND' or 'OR' logical operators.
            A sequence of restrictions implicitly uses 'AND'.
            * A restriction has the form of '<field> <operator> <value>'.
            * Supported fields/values for inspect jobs:
                - `state` - PENDING|RUNNING|CANCELED|FINISHED|FAILED
                - `inspected_storage` - DATASTORE|CLOUD_STORAGE|BIGQUERY
                - `trigger_name` - The resource name of the trigger that
                                   created job.
            * Supported fields for risk analysis jobs:
                - `state` - RUNNING|CANCELED|FINISHED|FAILED
            * The operator must be '=' or '!='.
            Examples:
            * inspected_storage = cloud_storage AND state = done
            * inspected_storage = cloud_storage OR inspected_storage = bigquery
            * inspected_storage = cloud_storage AND
                                  (state = done OR state = canceled)
        type: (Optional) The type of job. Defaults to 'INSPECT'.
            Choices:
            DLP_JOB_TYPE_UNSPECIFIED
            INSPECT_JOB: The job inspected content for sensitive data.
            RISK_ANALYSIS_JOB: The job executed a Risk Analysis computation.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Job type dictionary
    job_type_to_int = {
        "DLP_JOB_TYPE_UNSPECIFIED": google.cloud.dlp.DlpJobType.DLP_JOB_TYPE_UNSPECIFIED,
        "INSPECT_JOB": google.cloud.dlp.DlpJobType.INSPECT_JOB,
        "RISK_ANALYSIS_JOB": google.cloud.dlp.DlpJobType.RISK_ANALYSIS_JOB,
    }
    # If job type is specified, convert job type to number through enums.
    if job_type:
        job_type = job_type_to_int[job_type]

    # Call the API to get a list of jobs.
    response = dlp.list_dlp_jobs(
        request={"parent": parent, "filter": filter_string, "type_": job_type}
    )

    # Iterate over results.
    for job in response:
        print(f"Job: {job.name}; status: {job.state.name}")

REST

O recurso DlpJob tem um método projects.dlpJobs.list, com que é possível listar todos os jobs.

Para listar todos os jobs atualmente definidos no projeto, envie uma solicitação GET para o endpoint dlpJobs, conforme mostrado aqui:

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

A saída JSON a seguir lista um dos jobs retornados. A estrutura do gatilho de jobs espelha a do recurso DlpJob.

Saída JSON:

{
  "jobs":[
    {
      "name":"projects/[PROJECT-ID]/dlpJobs/i-5270277269264714623",
      "type":"INSPECT_JOB",
      "state":"DONE",
      "inspectDetails":{
        "requestedOptions":{
          "snapshotInspectTemplate":{
          },
          "jobConfig":{
            "storageConfig":{
              "cloudStorageOptions":{
                "fileSet":{
                  "url":"[CLOUD-STORAGE-URL]"
                },
                "fileTypes":[
                  "FILE_TYPE_UNSPECIFIED"
                ],
                "filesLimitPercent":100
              },
              "timespanConfig":{
                "startTime":"2019-09-08T22:43:16.623Z",
                "enableAutoPopulationOfTimespanConfig":true
              }
            },
            "inspectConfig":{
              "infoTypes":[
                {
                  "name":"US_SOCIAL_SECURITY_NUMBER"
                },
                {
                  "name":"CANADA_SOCIAL_INSURANCE_NUMBER"
                }
              ],
              "minLikelihood":"LIKELY",
              "limits":{
              },
              "includeQuote":true
            },
            "actions":[
              {
                "saveFindings":{
                  "outputConfig":{
                    "table":{
                      "projectId":"[PROJECT-ID]",
                      "datasetId":"[DATASET-ID]",
                      "tableId":"[TABLE-ID]"
                    }
                  }
                }
              }
            ]
          }
        },
        "result":{
          ...
        }
      },
      "createTime":"2019-09-09T22:43:16.918Z",
      "startTime":"2019-09-09T22:43:16.918Z",
      "endTime":"2019-09-09T22:43:53.091Z",
      "jobTriggerName":"projects/[PROJECT-ID]/jobTriggers/sample-trigger2"
    },
    ...

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Listar todos os gatilhos de job

Para listar todos os acionadores de jobs do projeto atual:

Console

No console do Google Cloud, acesse a página "Proteção de dados sensíveis".

Acessar a proteção de dados sensíveis

Na guia Inspeção, na subguia Acionadores de jobs, o console exibe uma lista de todos os acionadores de jobs do projeto atual.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Api.Gax;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using System;

public class TriggersList
{
    public static PagedEnumerable<ListJobTriggersResponse, JobTrigger> List(string projectId)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.ListJobTriggers(
            new ListJobTriggersRequest
            {
                Parent = new LocationName(projectId, "global").ToString(),
            });

        foreach (var trigger in response)
        {
            Console.WriteLine($"Name: {trigger.Name}");
            Console.WriteLine($"  Created: {trigger.CreateTime}");
            Console.WriteLine($"  Updated: {trigger.UpdateTime}");
            Console.WriteLine($"  Display Name: {trigger.DisplayName}");
            Console.WriteLine($"  Description: {trigger.Description}");
            Console.WriteLine($"  Status: {trigger.Status}");
            Console.WriteLine($"  Error count: {trigger.Errors.Count}");
        }

        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"github.com/golang/protobuf/ptypes"
	"google.golang.org/api/iterator"
)

// listTriggers lists the triggers for the given project.
func listTriggers(w io.Writer, projectID string) error {
	// projectID := "my-project-id"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a configured request.
	req := &dlppb.ListJobTriggersRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
	}
	// Send the request and iterate over the results.
	it := client.ListJobTriggers(ctx, req)
	for {
		t, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("Next: %w", err)
		}
		fmt.Fprintf(w, "Trigger %v\n", t.GetName())
		c, err := ptypes.Timestamp(t.GetCreateTime())
		if err != nil {
			return fmt.Errorf("CreateTime Timestamp: %w", err)
		}
		fmt.Fprintf(w, "  Created: %v\n", c.Format(time.RFC1123))
		u, err := ptypes.Timestamp(t.GetUpdateTime())
		if err != nil {
			return fmt.Errorf("UpdateTime Timestamp: %w", err)
		}
		fmt.Fprintf(w, "  Updated: %v\n", u.Format(time.RFC1123))
		fmt.Fprintf(w, "  Display Name: %q\n", t.GetDisplayName())
		fmt.Fprintf(w, "  Description: %q\n", t.GetDescription())
		fmt.Fprintf(w, "  Status: %v\n", t.GetStatus())
		fmt.Fprintf(w, "  Error Count: %v\n", len(t.GetErrors()))
	}

	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.ListJobTriggersRequest;
import com.google.privacy.dlp.v2.LocationName;
import java.io.IOException;

class TriggersList {
  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    listTriggers(projectId);
  }

  public static void listTriggers(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {
      // Build the request to be sent by the client
      ListJobTriggersRequest listJobTriggersRequest =
          ListJobTriggersRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .build();

      // Use the client to send the API request.
      DlpServiceClient.ListJobTriggersPagedResponse response =
          dlpServiceClient.listJobTriggers(listJobTriggersRequest);

      // Parse the response and process the results
      System.out.println("DLP triggers found:");
      for (JobTrigger trigger : response.getPage().getValues()) {
        System.out.println("Trigger: " + trigger.getName());
        System.out.println("\tCreated: " + trigger.getCreateTime());
        System.out.println("\tUpdated: " + trigger.getUpdateTime());
        if (trigger.getDisplayName() != null) {
          System.out.println("\tDisplay name: " + trigger.getDisplayName());
        }
        if (trigger.getDescription() != null) {
          System.out.println("\tDescription: " + trigger.getDescription());
        }
        System.out.println("\tStatus: " + trigger.getStatus());
        System.out.println("\tError count: " + trigger.getErrorsCount());
      }
      ;
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project'

async function listTriggers() {
  // Construct trigger listing request
  const request = {
    parent: `projects/${projectId}/locations/global`,
  };

  // Helper function to pretty-print dates
  const formatDate = date => {
    const msSinceEpoch = parseInt(date.seconds, 10) * 1000;
    return new Date(msSinceEpoch).toLocaleString('en-US');
  };

  // Run trigger listing request
  const [triggers] = await dlp.listJobTriggers(request);
  triggers.forEach(trigger => {
    // Log trigger details
    console.log(`Trigger ${trigger.name}:`);
    console.log(`  Created: ${formatDate(trigger.createTime)}`);
    console.log(`  Updated: ${formatDate(trigger.updateTime)}`);
    if (trigger.displayName) {
      console.log(`  Display Name: ${trigger.displayName}`);
    }
    if (trigger.description) {
      console.log(`  Description: ${trigger.description}`);
    }
    console.log(`  Status: ${trigger.status}`);
    console.log(`  Error count: ${trigger.errors.length}`);
  });
}

listTriggers();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\ListJobTriggersRequest;

/**
 * List Data Loss Prevention API job triggers.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 */
function list_triggers(string $callingProjectId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    $parent = "projects/$callingProjectId/locations/global";

    // Run request
    $listJobTriggersRequest = (new ListJobTriggersRequest())
        ->setParent($parent);
    $response = $dlp->listJobTriggers($listJobTriggersRequest);

    // Print results
    $triggers = $response->iterateAllElements();
    foreach ($triggers as $trigger) {
        printf('Trigger %s' . PHP_EOL, $trigger->getName());
        printf('  Created: %s' . PHP_EOL, $trigger->getCreateTime()->getSeconds());
        printf('  Updated: %s' . PHP_EOL, $trigger->getUpdateTime()->getSeconds());
        printf('  Display Name: %s' . PHP_EOL, $trigger->getDisplayName());
        printf('  Description: %s' . PHP_EOL, $trigger->getDescription());
        printf('  Status: %s' . PHP_EOL, $trigger->getStatus());
        printf('  Error count: %s' . PHP_EOL, count($trigger->getErrors()));
        $timespanConfig = $trigger->getInspectJob()->getStorageConfig()->getTimespanConfig();
        printf('  Auto-populates timespan config: %s' . PHP_EOL,
            ($timespanConfig && $timespanConfig->getEnableAutoPopulationOfTimespanConfig() ? 'yes' : 'no'));
    }
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import google.cloud.dlp

def list_triggers(project: str) -> None:
    """Lists all Data Loss Prevention API triggers.
    Args:
        project: The Google Cloud project id to use as a parent resource.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.list_job_triggers(request={"parent": parent})

    for trigger in response:
        print(f"Trigger {trigger.name}:")
        print(f"  Created: {trigger.create_time}")
        print(f"  Updated: {trigger.update_time}")
        if trigger.display_name:
            print(f"  Display Name: {trigger.display_name}")
        if trigger.description:
            print(f"  Description: {trigger.description}")
        print(f"  Status: {trigger.status}")
        print(f"  Error count: {len(trigger.errors)}")

REST

O recurso JobTrigger tem um método projects.jobTriggers.list, com que é possível listar todos os gatilhos de jobs.

Para listar todos os gatilhos de job definidos no projeto, envie uma solicitação GET para o endpoint jobTriggers, conforme mostrado aqui:

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/jobTriggers?key={YOUR_API_KEY}

A saída JSON abaixo lista o acionador de job que criamos na seção anterior. A estrutura do gatilho de jobs espelha a do recurso JobTrigger.

Saída JSON:

{
  "jobTriggers":[
    {
      "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
      "displayName":"JobTrigger1",
      "description":"Starts an inspection of a Datastore kind",
      "inspectJob":{
        "storageConfig":{
          "datastoreOptions":{
            "partitionId":{
              "projectId":"[PROJECT_ID]",
              "namespaceId":"[NAMESPACE_ID]"
            },
            "kind":{
              "name":"Example-Kind"
            }
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PHONE_NUMBER"
            }
          ],
          "minLikelihood":"LIKELY",
          "limits":{

          },
          "includeQuote":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT_ID]",
                  "datasetId":"[BIGQUERY_DATASET_NAME]",
                  "tableId":"[BIGQUERY_TABLE_NAME]"
                }
              }
            }
          }
        ]
      },
      "triggers":[
        {
          "schedule":{
            "recurrencePeriodDuration":"86400s"
          }
        }
      ],
      "createTime":"2018-11-30T01:52:41.171857Z",
      "updateTime":"2018-11-30T01:52:41.171857Z",
      "status":"HEALTHY"
    },

    ...

],
  "nextPageToken":"KkwKCQjivJ2UpPreAgo_Kj1wcm9qZWN0cy92ZWx2ZXR5LXN0dWR5LTE5NjEwMS9qb2JUcmlnZ2Vycy8xNTA5NzEyOTczMDI0MDc1NzY0"
}

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Excluir um job

Para excluir um job do projeto, o que também que inclui os resultados, faça o seguinte. Todos os resultados salvos externamente (como no BigQuery) não são alterados por essa operação.

Console

  1. No console do Google Cloud, acesse a página "Proteção de dados sensíveis".

    Acessar a proteção de dados sensíveis

  2. Clique na guia Inspeção e, em seguida, na subguia Inspecionar jobs. O console do Google Cloud exibe uma lista de todos os jobs do projeto atual.

  3. Na coluna Ações do gatilho de jobs que você quer excluir, clique no menu mais ações (exibido como três pontos organizados verticalmente) e clique em Excluir.

Como alternativa, na lista de jobs, clique no identificador do job que você quer excluir. Na página de detalhes do job, clique em Excluir.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using System;
using Google.Cloud.Dlp.V2;

public class JobsDelete
{
    public static void DeleteJob(string jobName)
    {
        var dlp = DlpServiceClient.Create();

        dlp.DeleteDlpJob(new DeleteDlpJobRequest
        {
            Name = jobName
        });

        Console.WriteLine($"Successfully deleted job {jobName}.");
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// deleteJob deletes the job with the given name.
func deleteJob(w io.Writer, jobName string) error {
	// jobName := "job-example"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()
	req := &dlppb.DeleteDlpJobRequest{
		Name: jobName,
	}
	if err = client.DeleteDlpJob(ctx, req); err != nil {
		return fmt.Errorf("DeleteDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Successfully deleted job")
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DeleteDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJobName;
import java.io.IOException;

public class JobsDelete {
  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String jobId = "your-job-id";
    deleteJobs(projectId, jobId);
  }

  // Deletes a DLP Job with the given jobId
  public static void deleteJobs(String projectId, String jobId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the complete job name from the projectId and jobId
      DlpJobName jobName = DlpJobName.of(projectId, jobId);

      // Construct the job deletion request to be sent by the client.
      DeleteDlpJobRequest deleteDlpJobRequest =
          DeleteDlpJobRequest.newBuilder().setName(jobName.toString()).build();

      // Send the job deletion request
      dlpServiceClient.deleteDlpJob(deleteDlpJobRequest);
      System.out.println("Job deleted successfully.");
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The name of the job whose results should be deleted
// Parent project ID is automatically extracted from this parameter
// const jobName = 'projects/my-project/dlpJobs/X-#####'

function deleteJob() {
  // Construct job deletion request
  const request = {
    name: jobName,
  };

  // Run job deletion request
  dlp
    .deleteDlpJob(request)
    .then(() => {
      console.log(`Successfully deleted job ${jobName}.`);
    })
    .catch(err => {
      console.log(`Error in deleteJob: ${err.message || err}`);
    });
}

deleteJob();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DeleteDlpJobRequest;

/**
 * Delete results of a Data Loss Prevention API job
 *
 * @param string $jobId The name of the job whose results should be deleted
 */
function delete_job(string $jobId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Run job-deletion request
    // The Parent project ID is automatically extracted from this parameter
    $deleteDlpJobRequest = (new DeleteDlpJobRequest())
        ->setName($jobId);
    $dlp->deleteDlpJob($deleteDlpJobRequest);

    // Print status
    printf('Successfully deleted job %s' . PHP_EOL, $jobId);
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import google.cloud.dlp

def delete_dlp_job(project: str, job_name: str) -> None:
    """Uses the Data Loss Prevention API to delete a long-running DLP job.
    Args:
        project: The project id to use as a parent resource.
        job_name: The name of the DlpJob resource to be deleted.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id and job name into a full resource id.
    name = f"projects/{project}/dlpJobs/{job_name}"

    # Call the API to delete job.
    dlp.delete_dlp_job(request={"name": name})

    print(f"Successfully deleted {job_name}")

REST

Para excluir um job do projeto atual, envie a solicitação EXCLUIR para o endpoint dlpJobs, conforme mostrado aqui. Substitua o campo [JOB-IDENTIFIER] pelo identificador do job, que começa com i-.

URL:

DELETE https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs/[JOB-IDENTIFIER]?key={YOUR_API_KEY}

Se a solicitação tiver sido bem-sucedida, a API DLP retornará uma resposta positiva. Para verificar se o job foi excluído, liste todos os jobs.

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Excluir gatilhos de jobs

Console

  1. No console do Google Cloud, acesse a página "Proteção de dados sensíveis".

    Acessar a proteção de dados sensíveis

    Na guia Inspeção, na subguia Acionadores de jobs, o console exibe uma lista de todos os acionadores de jobs do projeto atual.

  2. Na coluna Ações do gatilho de jobs que você quer excluir, clique no menu mais ações (exibido como três pontos organizados verticalmente) e clique em Excluir.

Como alternativa, na lista de acionadores de jobs, clique no nome do acionador que quer excluir. Na página de detalhes do acionador de jobs, clique em Excluir.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.Dlp.V2;
using System;

public class TriggersDelete
{

    public static void Delete(string triggerName)
    {
        var dlp = DlpServiceClient.Create();

        dlp.DeleteJobTrigger(
            new DeleteJobTriggerRequest
            {
                Name = triggerName
            });

        Console.WriteLine($"Successfully deleted trigger {triggerName}.");
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// deleteTrigger deletes the given trigger.
func deleteTrigger(w io.Writer, triggerID string) error {
	// triggerID := "my-trigger"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	req := &dlppb.DeleteJobTriggerRequest{
		Name: triggerID,
	}

	if err := client.DeleteJobTrigger(ctx, req); err != nil {
		return fmt.Errorf("DeleteJobTrigger: %w", err)
	}
	fmt.Fprintf(w, "Successfully deleted trigger %v", triggerID)
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DeleteJobTriggerRequest;
import com.google.privacy.dlp.v2.ProjectJobTriggerName;
import java.io.IOException;

class TriggersDelete {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String triggerId = "your-trigger-id";
    deleteTrigger(projectId, triggerId);
  }

  public static void deleteTrigger(String projectId, String triggerId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Get the full trigger name from the given triggerId and ProjectId
      ProjectJobTriggerName triggerName = ProjectJobTriggerName.of(projectId, triggerId);

      // Construct the trigger deletion request to be sent by the client
      DeleteJobTriggerRequest deleteJobTriggerRequest =
          DeleteJobTriggerRequest.newBuilder().setName(triggerName.toString()).build();

      // Send the trigger deletion request
      dlpServiceClient.deleteJobTrigger(deleteJobTriggerRequest);
      System.out.println("Trigger deleted: " + triggerName.toString());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project'

// The name of the trigger to be deleted
// Parent project ID is automatically extracted from this parameter
// const triggerId = 'projects/my-project/triggers/my-trigger';

async function deleteTrigger() {
  // Construct trigger deletion request
  const request = {
    name: triggerId,
  };

  // Run trigger deletion request
  await dlp.deleteJobTrigger(request);
  console.log(`Successfully deleted trigger ${triggerId}.`);
}

deleteTrigger();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\DeleteJobTriggerRequest;

/**
 * Delete a Data Loss Prevention API job trigger.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $triggerId         The name of the trigger to be deleted.
 */
function delete_trigger(string $callingProjectId, string $triggerId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Run request
    // The Parent project ID is automatically extracted from this parameter
    $triggerName = "projects/$callingProjectId/locations/global/jobTriggers/$triggerId";
    $deleteJobTriggerRequest = (new DeleteJobTriggerRequest())
        ->setName($triggerName);
    $dlp->deleteJobTrigger($deleteJobTriggerRequest);

    // Print the results
    printf('Successfully deleted trigger %s' . PHP_EOL, $triggerName);
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import google.cloud.dlp

def delete_trigger(project: str, trigger_id: str) -> None:
    """Deletes a Data Loss Prevention API trigger.
    Args:
        project: The id of the Google Cloud project which owns the trigger.
        trigger_id: The id of the trigger to delete.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Combine the trigger id with the parent id.
    trigger_resource = f"{parent}/jobTriggers/{trigger_id}"

    # Call the API.
    dlp.delete_job_trigger(request={"name": trigger_resource})

    print(f"Trigger {trigger_resource} successfully deleted.")

REST

Para excluir um gatilho de jobs do projeto atual, envie a solicitação EXCLUIR para o endpoint jobTriggers, conforme mostrado aqui. Substitua o campo [JOB-TRIGGER-NAME] pelo nome do gatilho de jobs.

URL:

DELETE https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/jobTriggers/[JOB-TRIGGER-NAME]?key={YOUR_API_KEY}

Se a solicitação tiver sido bem-sucedida, a API DLP retornará uma resposta positiva. Para verificar se o acionador de job foi excluído com sucesso, liste todos os acionadores de job.

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Receber um job

Para receber um job do projeto, o que também que inclui os resultados, faça o seguinte. Todos os resultados salvos externamente (como no BigQuery) não são alterados por essa operação.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.Dlp.V2;
using System;

public class JobsGet
{
    public static DlpJob GetDlpJob(string jobName)
    {
        var dlp = DlpServiceClient.Create();

        var response = dlp.GetDlpJob(jobName);

        Console.WriteLine($"Job: {response.Name} status: {response.State}");

        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// jobsGet gets an inspection job using jobName
func jobsGet(w io.Writer, projectID string, jobName string) error {
	// projectId := "my-project-id"
	// jobName := "your-job-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Construct the request to be sent by the client.
	req := &dlppb.GetDlpJobRequest{
		Name: jobName,
	}

	// Send the request.
	resp, err := client.GetDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Job Name: %v Job Status: %v", resp.Name, resp.State)
	return nil
}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.DlpJobName;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import java.io.IOException;

public class JobsGet {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String jobId = "your-job-id";
    getJobs(projectId, jobId);
  }

  // Gets a DLP Job with the given jobId
  public static void getJobs(String projectId, String jobId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Construct the complete job name from the projectId and jobId
      DlpJobName jobName = DlpJobName.of(projectId, jobId);

      // Construct the get job request to be sent by the client.
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(jobName.toString()).build();

      // Send the get job request
      dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job got successfully.");
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// Job name to look for
// const jobName = 'your-job-name';

async function getJob() {
  // Construct request for finding job using job name.
  const request = {
    name: jobName,
  };

  // Send the request and receive response from the service
  const [job] = await dlp.getDlpJob(request);

  // Print results.
  console.log(`Job ${job.name} status: ${job.state}`);
}

getJob();

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;

/**
 * Get DLP inspection job.
 * @param string $jobName           Dlp job name
 */
function get_job(
    string $jobName
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    try {
        // Send the get job request
        $getDlpJobRequest = (new GetDlpJobRequest())
            ->setName($jobName);
        $response = $dlp->getDlpJob($getDlpJobRequest);
        printf('Job %s status: %s' . PHP_EOL, $response->getName(), $response->getState());
    } finally {
        $dlp->close();
    }
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import google.cloud.dlp

def get_dlp_job(project: str, job_name: str) -> None:
    """Uses the Data Loss Prevention API to retrieve a DLP job.
    Args:
        project: The project id to use as a parent resource.
        job_name: The name of the DlpJob resource to be retrieved.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id and job name into a full resource id.
    job_name = f"projects/{project}/locations/global/dlpJobs/{job_name}"

    # Call the API
    response = dlp.get_dlp_job(request={"name": job_name})

    print(f"Job: {response.name} Status: {response.state}")

REST

Para receber um job do projeto atual, envie a GET para o endpoint dlpJobs, conforme mostrado aqui. Substitua o campo [JOB-IDENTIFIER] pelo identificador do job, que começa com i-.

URL:

GET https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs/[JOB-IDENTIFIER]?key={YOUR_API_KEY}

Se a solicitação tiver sido bem-sucedida, a API DLP retornará uma resposta positiva.

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Forçar a execução imediata de um acionador de jobs

Depois que um gatilho de job é criado, é possível forçar uma execução imediata dele para teste ativando-o. Para isso, execute o seguinte comando:

curl --request POST \
    -H "Content-Type: application/json" \
    -H "Accept: application/json" \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    'https://dlp.googleapis.com/v2/JOB_TRIGGER_NAME:activate'

Substitua:

  • PROJECT_ID: o ID do projeto do Google Cloud para faturar as cobranças de acesso associadas à solicitação.
  • JOB_TRIGGER_NAME: o nome completo do recurso do acionador de jobs, por exemplo, projects/my-project/locations/global/jobTriggers/123456789.

Atualizar um gatilho de jobs atual

Além de criar, listar e excluir acionadores de jobs, também é possível atualizar um acionador de jobs atual. Para alterar a configuração de um acionador de jobs atual:

Console

  1. No console do Google Cloud, acesse a página "Proteção de dados sensíveis".

    Acessar a proteção de dados sensíveis

  2. Clique na guia Inspeção e, em seguida, na subguia Acionadores de job.

    O console exibe uma lista de todos os acionadores de jobs do projeto atual.

  3. Na coluna Ações do gatilho de jobs que você quer excluir, clique em Mais e depois emVer detalhes.

  4. Na página de detalhes do acionador de jobs, clique em Editar.

  5. Na página "Editar acionador", altere o local dos dados de entrada, os detalhes da detecção, como modelos, infoTypes ou probabilidade, além de todas as ações pós-verificação e a programação do acionador de jobs. Quando terminar de fazer as alterações, clique em Salvar.

C#

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;

public class TriggersUpdate
{
    public static JobTrigger UpdateJob(
        string projectId,
        string triggerId,
        IEnumerable<InfoType> infoTypes = null,
        Likelihood minLikelihood = Likelihood.Likely)
    {
        // Instantiate the client.
        var dlp = DlpServiceClient.Create();

        // Construct the update job trigger request object by providing the trigger name,
        // job trigger object which will specify the type of info to be inspected and
        // update mask object which specifies the field to be updated.
        // Refer to https://cloud.google.com/dlp/docs/reference/rest/v2/Container for specifying the paths in container object.
        var request = new UpdateJobTriggerRequest
        {
            JobTriggerName = new JobTriggerName(projectId, triggerId),
            JobTrigger = new JobTrigger
            {
                InspectJob = new InspectJobConfig
                {
                    InspectConfig = new InspectConfig
                    {
                        InfoTypes =
                        {
                            infoTypes ?? new InfoType[]
                            {
                                new InfoType { Name = "US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER" }
                            }
                        },
                        MinLikelihood = minLikelihood
                    }
                }
            },
            // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
            // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
            UpdateMask = new FieldMask
            {
                Paths =
                {
                    "inspect_job.inspect_config.info_types",
                    "inspect_job.inspect_config.min_likelihood"
                }
            }
        };

        // Call the API.
        JobTrigger response = dlp.UpdateJobTrigger(request);

        // Inspect the result.
        Console.WriteLine($"Job Trigger Name: {response.Name}");
        Console.WriteLine($"InfoType updated: {response.InspectJob.InspectConfig.InfoTypes[0]}");
        Console.WriteLine($"Likelihood updated: {response.InspectJob.InspectConfig.MinLikelihood}");
        return response;
    }
}

Go

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"google.golang.org/protobuf/types/known/fieldmaskpb"
)

// updateTrigger updates an existing job trigger in Google Cloud Data Loss Prevention (DLP).
// It modifies the configuration of the specified job trigger with the provided updated settings.
func updateTrigger(w io.Writer, jobTriggerName string) error {
	// jobTriggerName := "your-job-trigger-name" (projects/<projectID>/locations/global/jobTriggers/my-trigger)

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoType := &dlppb.InfoType{
		Name: "PERSON_NAME",
	}

	// Specify the inspectConfig that represents the configuration settings for inspecting sensitive data in
	// DLP API. It includes detection types, custom info types, inspection methods, and actions
	// to be taken on detection.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes: []*dlppb.InfoType{
			infoType,
		},
		MinLikelihood: dlppb.Likelihood_LIKELY,
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		InspectConfig: inspectConfig,
	}

	// Specify the jobTrigger that represents a DLP job trigger configuration.
	// It defines the conditions, actions, and schedule for executing inspections
	// on sensitive data in the specified data storage.
	jobTrigger := &dlppb.JobTrigger{
		Job: &dlppb.JobTrigger_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// fieldMask represents a set of fields to be included in an update operation.
	// It is used to specify which fields of a resource should be updated.
	updateMask := &fieldmaskpb.FieldMask{
		Paths: []string{"inspect_job.inspect_config.info_types", "inspect_job.inspect_config.min_likelihood"},
	}

	// Combine configurations into a request for the service.
	req := &dlppb.UpdateJobTriggerRequest{
		Name:       jobTriggerName,
		JobTrigger: jobTrigger,
		UpdateMask: updateMask,
	}

	// Send the scan request and process the response
	resp, err := client.UpdateJobTrigger(ctx, req)
	if err != nil {
		return err
	}

	// Print the result.
	fmt.Fprintf(w, "Successfully Updated trigger: %v", resp)
	return nil

}

Java

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.JobTrigger;
import com.google.privacy.dlp.v2.JobTriggerName;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.UpdateJobTriggerRequest;
import com.google.protobuf.FieldMask;
import java.io.IOException;

public class TriggersPatch {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.

    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The name of the job trigger to be updated.
    String jobTriggerName = "your-job-trigger-name";
    patchTrigger(projectId, jobTriggerName);
  }

  // Uses the Data Loss Prevention API to update an existing job trigger.
  public static void patchTrigger(String projectId, String jobTriggerName) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      InspectConfig inspectConfig = InspectConfig.newBuilder()
              .addInfoTypes(infoType)
              .setMinLikelihood(Likelihood.LIKELY)
              .build();

      InspectJobConfig inspectJobConfig = InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .build();

      JobTrigger jobTrigger = JobTrigger.newBuilder()
              .setInspectJob(inspectJobConfig)
              .build();

      // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
      // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
      FieldMask fieldMask = FieldMask.newBuilder()
              .addPaths("inspect_job.inspect_config.info_types")
              .addPaths("inspect_job.inspect_config.min_likelihood")
              .build();

      // Update the job trigger with the new configuration.
      UpdateJobTriggerRequest updateJobTriggerRequest = UpdateJobTriggerRequest.newBuilder()
              .setName(JobTriggerName.of(projectId, jobTriggerName).toString())
              .setJobTrigger(jobTrigger)
              .setUpdateMask(fieldMask)
              .build();

      // Call the API to update the job trigger.
      JobTrigger updatedJobTrigger = dlpServiceClient.updateJobTrigger(updateJobTriggerRequest);

      System.out.println("Job Trigger Name: " + updatedJobTrigger.getName());
      System.out.println(
          "InfoType updated: "
              + updatedJobTrigger.getInspectJob().getInspectConfig().getInfoTypes(0).getName());
      System.out.println(
          "Likelihood updated: "
              + updatedJobTrigger.getInspectJob().getInspectConfig().getMinLikelihood());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlpClient = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The job trigger ID to run the API call under
// const jobTriggerName = 'your-job-trigger-name';

async function updateTrigger() {
  // Construct inspect configuration to match PERSON_NAME infotype
  const inspectConfig = {
    infoTypes: [{name: 'PERSON_NAME'}],
    minLikelihood: 'LIKELY',
  };

  // Configure the job trigger we want to update.
  const jobTrigger = {inspectJob: {inspectConfig}};

  const updateMask = {
    paths: [
      'inspect_job.inspect_config.info_types',
      'inspect_job.inspect_config.min_likelihood',
    ],
  };

  // Combine configurations into a request for the service.
  const request = {
    name: `projects/${projectId}/jobTriggers/${jobTriggerName}`,
    jobTrigger,
    updateMask,
  };

  // Send the request and receive response from the service
  const [updatedJobTrigger] = await dlpClient.updateJobTrigger(request);

  // Print the results
  console.log(`Updated Trigger: ${JSON.stringify(updatedJobTrigger)}`);
}
updateTrigger(projectId, jobTriggerName);

PHP

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\JobTrigger;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Protobuf\FieldMask;

/**
 * Update an existing job trigger.
 *
 * @param string $callingProjectId  The Google Cloud Project ID to run the API call under.
 * @param string $jobTriggerName    The job trigger name to update.
 *
 */
function update_trigger(
    string $callingProjectId,
    string $jobTriggerName
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Configure the inspectConfig.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes([
            (new InfoType())
                ->setName('US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER')
        ])
        ->setMinLikelihood(Likelihood::LIKELY);

    // Configure the Job Trigger we want the service to perform.
    $jobTrigger = (new JobTrigger())
        ->setInspectJob((new InspectJobConfig())
            ->setInspectConfig($inspectConfig));

    // Specify fields of the jobTrigger resource to be updated when the job trigger is modified.
    // Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask for constructing the field mask paths.
    $fieldMask = (new FieldMask())
        ->setPaths([
            'inspect_job.inspect_config.info_types',
            'inspect_job.inspect_config.min_likelihood'
        ]);

    // Send the update job trigger request and process the response.
    $name = "projects/$callingProjectId/locations/global/jobTriggers/" . $jobTriggerName;

    $response = $dlp->updateJobTrigger($name, [
        'jobTrigger' => $jobTrigger,
        'updateMask' => $fieldMask
    ]);

    // Print results.
    printf('Successfully update trigger %s' . PHP_EOL, $response->getName());
}

Python

Para saber como instalar e usar a biblioteca de cliente para proteção de dados sensíveis, consulte Bibliotecas de cliente de proteção de dados sensíveis.

Para usar a proteção de dados sensíveis, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from typing import List

import google.cloud.dlp

def update_trigger(
    project: str,
    info_types: List[str],
    trigger_id: str,
) -> None:
    """Uses the Data Loss Prevention API to update an existing job trigger.
    Args:
        project: The Google Cloud project id to use as a parent resource
        info_types: A list of strings representing infoTypes to update trigger with.
            A full list of infoType categories can be fetched from the API.
        trigger_id: The id of job trigger which needs to be updated.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Specify fields of the jobTrigger resource to be updated when the
    # job trigger is modified.
    job_trigger = {
        "inspect_job": {
            "inspect_config": {
                "info_types": info_types,
                "min_likelihood": google.cloud.dlp_v2.Likelihood.LIKELY,
            }
        }
    }

    # Convert the project id into a full resource id.
    trigger_name = f"projects/{project}/jobTriggers/{trigger_id}"

    # Call the API.
    # Refer https://protobuf.dev/reference/protobuf/google.protobuf/#field-mask
    # for constructing the field mask paths.
    response = dlp.update_job_trigger(
        request={
            "name": trigger_name,
            "job_trigger": job_trigger,
            "update_mask": {
                "paths": [
                    "inspect_job.inspect_config.info_types",
                    "inspect_job.inspect_config.min_likelihood",
                ]
            },
        }
    )

    # Print out the result.
    print(f"Successfully updated trigger: {response.name}")
    print(
        f"Updated InfoType: {response.inspect_job.inspect_config.info_types[0].name}"
        f" \nUpdates Likelihood: {response.inspect_job.inspect_config.min_likelihood}\n",
    )

REST

Use o método projects.jobTriggers.patch para enviar novos valores JobTrigger à API DLP e atualizar esses valores em um acionador de jobs especificado.

Por exemplo, considere o seguinte acionador de jobs simples. Esse JSON representa o acionador de jobs e foi retornado após o envio de uma solicitação GET para o endpoint do acionador de jobs do projeto atual.

Saída JSON:

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://dlptesting/*"
        },
        "fileTypes":[
          "FILE_TYPE_UNSPECIFIED"
        ],
        "filesLimitPercent":100
      },
      "timespanConfig":{
        "enableAutoPopulationOfTimespanConfig":true
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"US_SOCIAL_SECURITY_NUMBER"
        }
      ],
      "minLikelihood":"POSSIBLE",
      "limits":{

      }
    },
    "actions":[
      {
        "jobNotificationEmails":{

        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2019-03-06T21:19:45.774841Z",
  "updateTime":"2019-03-06T21:19:45.774841Z",
  "status":"HEALTHY"
}

O JSON a seguir, quando enviado com uma solicitação PATCH para o endpoint especificado, atualiza o acionador de jobs indicado com um novo infoType para verificação, bem como uma nova probabilidade mínima. Também é preciso especificar o atributo updateMask e o valor dele está no formato FieldMask.

Entrada JSON:

PATCH https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]?key={YOUR_API_KEY}

{
  "jobTrigger":{
    "inspectJob":{
      "inspectConfig":{
        "infoTypes":[
          {
            "name":"US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER"
          }
        ],
        "minLikelihood":"LIKELY"
      }
    }
  },
  "updateMask":"inspectJob(inspectConfig(infoTypes,minLikelihood))"
}

Depois de enviar esse JSON para o URL especificado, ele retorna o seguinte, representando o acionador de jobs atualizado. O infoType e os valores de probabilidade originais foram substituídos pelos novos valores.

Saída JSON:

{
  "name":"projects/[PROJECT_ID]/jobTriggers/[JOB_TRIGGER_NAME]",
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://dlptesting/*"
        },
        "fileTypes":[
          "FILE_TYPE_UNSPECIFIED"
        ],
        "filesLimitPercent":100
      },
      "timespanConfig":{
        "enableAutoPopulationOfTimespanConfig":true
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"US_INDIVIDUAL_TAXPAYER_IDENTIFICATION_NUMBER"
        }
      ],
      "minLikelihood":"LIKELY",
      "limits":{

      }
    },
    "actions":[
      {
        "jobNotificationEmails":{

        }
      }
    ]
  },
  "triggers":[
    {
      "schedule":{
        "recurrencePeriodDuration":"86400s"
      }
    }
  ],
  "createTime":"2019-03-06T21:19:45.774841Z",
  "updateTime":"2019-03-06T21:27:01.650183Z",
  "lastRunTime":"1970-01-01T00:00:00Z",
  "status":"HEALTHY"
}

Para testar isso rapidamente, use a API Explorer que está incorporada abaixo. Para informações gerais sobre como usar o JSON para enviar solicitações à API DLP, consulte o guia de início rápido do JSON.

Latência do job

Não há objetivos de nível de serviço (SLO) garantidos para jobs e acionadores de jobs. A latência é afetada por vários fatores, incluindo a quantidade de dados a serem verificados, o repositório de armazenamento que está sendo verificado, o tipo e o número de infoTypes que você está verificando, a região onde o job é processado e os recursos de computação disponíveis nessa região. Portanto, a latência dos jobs de inspeção não pode ser determinada com antecedência.

Para ajudar a reduzir a latência do job, tente o seguinte:

  • Ative a amostragem se estiver disponível para o job ou o acionador de jobs.
  • Evite ativar os infoTypes que não são necessários. Embora as opções a seguir sejam úteis em certos cenários, esses infoTypes podem fazer solicitações a serem executadas muito mais lentamente do que as solicitações que não os incluem:

    • PERSON_NAME
    • FEMALE_NAME
    • MALE_NAME
    • FIRST_NAME
    • LAST_NAME
    • DATE_OF_BIRTH
    • LOCATION
    • STREET_ADDRESS
    • ORGANIZATION_NAME
  • Sempre especifique explicitamente os infoTypes. Não use uma lista de infoTypes vazias.

  • Se possível, use uma região de processamento diferente.

Se você ainda tiver problemas de latência com jobs depois de tentar essas técnicas, considere usar solicitações content.inspect ou content.deidentify em vez de jobs. Esses métodos são cobertos pelo contrato de nível de serviço. Para mais informações, consulte o Contrato de nível de serviço de proteção de dados sensíveis.

Limitar as verificações apenas a conteúdo novo

É possível configurar seu gatilho de jobs para definir automaticamente a data do período dos arquivos armazenados no Cloud Storage ou no BigQuery. Quando você define o objeto TimespanConfig para preenchimento automático, a proteção de dados sensíveis verifica apenas os dados adicionados ou modificados desde a última execução do acionador:

...
  timespan_config {
        enable_auto_population_of_timespan_config: true
      }
...

Acionar jobs ao carregar arquivos

Além do suporte a acionadores de jobs, que é integrado à proteção de dados sensíveis, o Google Cloud também tem vários componentes que podem ser usados para integrar ou acionar jobs de proteção de dados sensíveis. Por exemplo, é possível usar o Cloud Functions para acionar uma verificação de proteção de dados sensíveis sempre que um arquivo for enviado ao Cloud Storage.

Para informações sobre como configurar essa operação, consulte Como automatizar a classificação dos dados enviados ao Cloud Storage.

A seguir