이제 Cloud Data Loss Prevention(Cloud DLP)은 민감한 정보 보호에 포함됩니다. API 이름은 Cloud Data Loss Prevention API(DLP API)로 그대로 유지됩니다. 민감한 정보 보호를 구성하는 서비스에 대한 자세한 내용은 민감한 정보 보호 개요를 참조하세요.
델타-존재(δ-존재)는 개인이 분석된 데이터세트에 속할 가능성을 정량화하는 측정항목입니다. k-맵과 마찬가지로 통계 모델을 사용하여 공격 데이터 세트를 예측하는 민감한 정보 보호를 통해 δ-존재 값을 추정할 수 있습니다.
δ-존재는 공격 데이터 세트가 명시적으로 알려진 다른 위험 분석 방법과 대조됩니다. 데이터 유형에 따라 민감한 정보 보호는 공개적으로 사용 가능한 데이터 세트(예: 미국 통계국의 데이터 세트) 또는 커스텀 통계 모델(예: 사용자가 지정하는 BigQuery 테이블 하나 이상)을 사용하거나 입력 데이터 세트 값 분포에서 추론할 수 있습니다.
이 주제에서는 민감한 정보 보호를 사용하여 데이터 세트의 δ-존재 값을 계산하는 방법을 보여줍니다. 계속 진행하기 전에 δ-존재 또는 일반 위험 분석에 대한 자세한 내용은 위험 분석 개념 주제를 참조하세요.
REST API를 사용하여 δ-존재 위험 분석 작업의 결과를 검색하려면 다음 GET 요청을 projects.dlpJobs 리소스에 보냅니다. PROJECT_ID를 프로젝트 ID로 바꾸고 JOB_ID를 결과를 가져올 작업 식별자로 바꿉니다.
작업 ID는 작업 시작 시 반환되었으며 모든 작업을 나열하여 검색할 수도 있습니다.
GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[],[],null,["# Computing δ-presence for a dataset\n\nDelta-presence (*δ* -presence) is a metric that quantifies the probability that\nan individual belongs to an analyzed dataset. Like [*k*-map](#compute-k-map),\nyou can estimate *δ*-presence values using Sensitive Data Protection, which\nuses a statistical model to estimate the attack dataset.\n\n*δ*-presence contrasts with the other risk analysis methods, in which the\nattack dataset is explicitly known. Depending on the type of data,\nSensitive Data Protection uses publicly available datasets (for example, from the\nUS Census) or a custom statistical model (for example, one or more\nBigQuery tables that you specify), or it extrapolates from the\ndistribution of values in your input dataset.\n\nThis topic demonstrates how to compute *δ* -presence values for a dataset using\nSensitive Data Protection. For more information about *δ* -presence or risk analysis in\ngeneral, see the [risk analysis concept topic](/sensitive-data-protection/docs/concepts-risk-analysis)\nbefore continuing on.\n| **Note:** At this time, you can only compute *δ* -presence values using the DLP API or Sensitive Data Protection-supported [client\n| libraries](/sensitive-data-protection/docs/libraries). Sensitive Data Protection in the Google Cloud console doesn't support computing *δ*-presence values.\n\n\u003cbr /\u003e\n\n| **Note:** Prematurely canceling an operation midway through a job still incurs costs for the portion of the job that was completed. For more information about billing, see [Sensitive Data Protection pricing](https://cloud.google.com/sensitive-data-protection/pricing).\n\n\u003cbr /\u003e\n\nBefore you begin\n----------------\n\n\nBefore continuing, be sure you've done the following:\n\n1. [Sign in](https://accounts.google.com/Login) to your Google Account.\n2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.\n[Go to the project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n3. Make sure that billing is enabled for your Google Cloud project. [Learn how to confirm billing is enabled for your\n project.](/billing/docs/how-to/modify-project)\n4. Enable Sensitive Data Protection.\n[Enable Sensitive Data Protection](https://console.cloud.google.com/flows/enableapi?apiid=dlp.googleapis.com)\n5. Select a BigQuery dataset to analyze. Sensitive Data Protection estimates the *δ*-presence metric by scanning a BigQuery table.\n6. Determine the types of datasets you want to use to model the attack dataset. For more information, see the reference page for the [`DeltaPresenceEstimationConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#deltapresenceestimationconfig) object, as well as [Risk\n analysis terms and techniques](/sensitive-data-protection/docs/concepts-risk-analysis#risk_analysis_terms_and_techniques).\n\n\u003cbr /\u003e\n\nCompute *δ*-presence metrics\n----------------------------\n\nTo compute a *δ* -presence estimate using Sensitive Data Protection, send a request\nto the following URL, where \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e indicates your [project\nidentifier](https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects): \n\n```\nhttps://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs\n```\n\nThe request contains a\n[`RiskAnalysisJobConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs/create#riskanalysisjobconfig)\nobject, which is composed of the following:\n\n- A\n [`PrivacyMetric`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#privacymetric)\n object. This is where you specify that you want to calculate *δ* -presence by\n specifying a\n [`DeltaPresenceEstimationConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#deltapresenceestimationconfig)\n object containing the following:\n\n - `quasiIds[]`: Required. Fields\n ([`QuasiId`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#quasiid)\n objects) considered to be quasi-identifiers to scan and use to compute\n *δ*-presence. No two columns can have the same tag. These can be any of the\n following:\n\n - An [infoType](/sensitive-data-protection/docs/reference/rest/v2/InfoType): This causes Sensitive Data Protection to use the relevant public dataset as a statistical model of population, including US ZIP codes, region codes, ages, and genders.\n - A custom infoType: A custom tag wherein you indicate an auxiliary table (an [`AuxiliaryTable`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob.AuxiliaryTable) object) that contains statistical information about the possible values of this column.\n - The `inferred` tag: If no semantic tag is indicated, specify `inferred`. Sensitive Data Protection infers the statistical model from the distribution of values in the input data.\n - `regionCode`: An\n [ISO 3166-1 alpha-2 region code](https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2)\n for Sensitive Data Protection to use in statistical modeling. This value\n is required if no column is tagged with a region-specific infoType (for\n example, a US ZIP code) or a region code.\n\n - `auxiliaryTables[]`: Auxiliary tables\n ([`StatisticalTable`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#statisticaltable)\n objects) to use in the analysis. Each custom tag used to tag a\n quasi-identifier column (from `quasiIds[]`) must appear in exactly one\n column of one auxiliary table.\n\n- A [`BigQueryTable`](/sensitive-data-protection/docs/reference/rest/v2/BigQueryTable)\n object. Specify the BigQuery table to scan by including all of\n the following:\n\n - `projectId`: The project ID of the project containing the table.\n - `datasetId`: The dataset ID of the table.\n - `tableId`: The name of the table.\n- A set of one or more\n [`Action`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#Action)\n objects, which represent actions to run, in the order given, at the\n completion of the job. Each `Action` object can contain one of the\n following actions:\n\n - [`SaveFindings`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#SaveFindings) object: Saves the results of the risk analysis scan to a BigQuery table.\n - [`PublishToPubSub`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishToPubSub) object: [Publishes a notification to a Pub/Sub topic](/pubsub/docs/publisher).\n\n | **Note:** If there are configuration or permission issues with the Pub/Sub topic, Sensitive Data Protection retries sending the Pub/Sub notification for up to two weeks. After two weeks, the notification is discarded.\n - [`PublishSummaryToCscc`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishSummaryToCscc) object: Saves a results summary to Security Command Center.\n - [`PublishFindingsToCloudDataCatalog`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishFindingsToCloudDataCatalog) object: Saves results to [Data Catalog](/sensitive-data-protection/docs/sending-results-to-dc).\n - [`JobNotificationEmails`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#JobNotificationEmails) object: Sends you an email with results.\n - [`PublishToStackdriver`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishToStackdriver) object: Saves results to Google Cloud Observability.\n\nViewing *δ*-presence job results\n--------------------------------\n\nTo retrieve the results of the *δ* -presence risk analysis job using the REST\nAPI, send the following GET request to the\n[`projects.dlpJobs`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs/get)\nresource. Replace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with your project ID and\n\u003cvar translate=\"no\"\u003eJOB_ID\u003c/var\u003e with the identifier of the job you want to obtain results for.\nThe job ID was returned when you started the job, and can also be retrieved by\n[listing all jobs](#list-jobs). \n\n```\nGET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID\n```\n\nThe request returns a JSON object containing an instance of the job. The results\nof the analysis are inside the `\"riskDetails\"` key, in an\n[`AnalyzeDataSourceRiskDetails`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob.AnalyzeDataSourceRiskDetails)\nobject. For more information, see the API reference for the\n[`DlpJob`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob)\nresource.\n\nWhat's next\n-----------\n\n- Learn how to calculate the [*k*-anonymity](/sensitive-data-protection/docs/compute-k-anonymity) value for a dataset.\n- Learn how to calculate the [*l*-diversity](/sensitive-data-protection/docs/compute-l-diversity) value for a dataset.\n- Learn how to calculate the [*k*-map](/sensitive-data-protection/docs/compute-k-map) value for a dataset."]]