以下部分提供了一个示例,展示了如何结合使用 Hugging Face Transformers 库和 TensorFlow 微调 BERT 模型,以进行序列分类。数据集会下载到已挂载的 Parallelstore 支持的卷中,以便模型训练直接从该卷读取数据。
前提条件
- 确保您的节点至少有 8 GB 的可用内存。
- 创建一个请求 Parallelstore 支持的卷的 PersistentVolumeClaim。
为模型训练作业保存以下 YAML 清单 (parallelstore-csi-job-example.yaml
)。
apiVersion: batch/v1
kind: Job
metadata:
name: parallelstore-csi-job-example
spec:
template:
metadata:
annotations:
gke-parallelstore/cpu-limit: "0"
gke-parallelstore/memory-limit: "0"
spec:
securityContext:
runAsUser: 1000
runAsGroup: 100
fsGroup: 100
containers:
- name: tensorflow
image: jupyter/tensorflow-notebook@sha256:173f124f638efe870bb2b535e01a76a80a95217e66ed00751058c51c09d6d85d
command: ["bash", "-c"]
args:
- |
pip install transformers datasets
python - <<EOF
from datasets import load_dataset
dataset = load_dataset("glue", "cola", cache_dir='/data')
dataset = dataset["train"]
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"])
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
EOF
volumeMounts:
- name: parallelstore-volume
mountPath: /data
volumes:
- name: parallelstore-volume
persistentVolumeClaim:
claimName: parallelstore-pvc
restartPolicy: Never
backoffLimit: 1
将 YAML 清单应用于集群。
kubectl apply -f parallelstore-csi-job-example.yaml
使用以下命令检查数据加载和模型训练进度:
POD_NAME=$(kubectl get pod | grep 'parallelstore-csi-job-example' | awk '{print $1}')
kubectl logs -f $POD_NAME -c tensorflow