Executar a análise de sentimento usando as bibliotecas de cliente

Veja nesta página como dar os primeiros passos com a Cloud Natural Language API em sua linguagem de programação favorita usando as bibliotecas de cliente do Google Cloud.

Antes de começar

  1. Sign in to your Google Account.

    If you don't already have one, sign up for a new account.

  2. Install the Google Cloud CLI.
  3. To initialize the gcloud CLI, run the following command:

    gcloud init
  4. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Cloud Natural Language API:

    gcloud services enable language.googleapis.com
  7. Create local authentication credentials for your user account:

    gcloud auth application-default login
  8. Install the Google Cloud CLI.
  9. To initialize the gcloud CLI, run the following command:

    gcloud init
  10. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  11. Make sure that billing is enabled for your Google Cloud project.

  12. Enable the Cloud Natural Language API:

    gcloud services enable language.googleapis.com
  13. Create local authentication credentials for your user account:

    gcloud auth application-default login

Instale a biblioteca de cliente

Go

go get cloud.google.com/go/language/apiv1

Java

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.50.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-language</artifactId>
  </dependency>
</dependencies>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-language:2.54.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-language" % "2.54.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Node.js

Antes de instalar a biblioteca, verifique se você preparou seu ambiente para o desenvolvimento do Node.js.

npm install --save @google-cloud/language

Python

Antes de instalar a biblioteca, verifique se você preparou seu ambiente para o desenvolvimento do Python.

pip install --upgrade google-cloud-language

Analisar texto

Agora você pode usar a Natural Language API para analisar texto. Execute o código a seguir para realizar a análise de sentimento do primeiro texto:

Go


// Sample language-quickstart uses the Google Cloud Natural API to analyze the
// sentiment of "Hello, world!".
package main

import (
	"context"
	"fmt"
	"log"

	language "cloud.google.com/go/language/apiv1"
	"cloud.google.com/go/language/apiv1/languagepb"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := language.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	// Sets the text to analyze.
	text := "Hello, world!"

	// Detects the sentiment of the text.
	sentiment, err := client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
	if err != nil {
		log.Fatalf("Failed to analyze text: %v", err)
	}

	fmt.Printf("Text: %v\n", text)
	if sentiment.DocumentSentiment.Score >= 0 {
		fmt.Println("Sentiment: positive")
	} else {
		fmt.Println("Sentiment: negative")
	}
}

Java

// Imports the Google Cloud client library
import com.google.cloud.language.v1.Document;
import com.google.cloud.language.v1.Document.Type;
import com.google.cloud.language.v1.LanguageServiceClient;
import com.google.cloud.language.v1.Sentiment;

public class QuickstartSample {
  public static void main(String... args) throws Exception {
    // Instantiates a client
    try (LanguageServiceClient language = LanguageServiceClient.create()) {

      // The text to analyze
      String text = "Hello, world!";
      Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();

      // Detects the sentiment of the text
      Sentiment sentiment = language.analyzeSentiment(doc).getDocumentSentiment();

      System.out.printf("Text: %s%n", text);
      System.out.printf("Sentiment: %s, %s%n", sentiment.getScore(), sentiment.getMagnitude());
    }
  }
}

Node.js

Antes de executar o exemplo, verifique se você preparou o ambiente para o desenvolvimento em Node.js.

async function quickstart() {
  // Imports the Google Cloud client library
  const language = require('@google-cloud/language');

  // Instantiates a client
  const client = new language.LanguageServiceClient();

  // The text to analyze
  const text = 'Hello, world!';

  const document = {
    content: text,
    type: 'PLAIN_TEXT',
  };

  // Detects the sentiment of the text
  const [result] = await client.analyzeSentiment({document: document});
  const sentiment = result.documentSentiment;

  console.log(`Text: ${text}`);
  console.log(`Sentiment score: ${sentiment.score}`);
  console.log(`Sentiment magnitude: ${sentiment.magnitude}`);
}

Python

Antes de executar o exemplo, verifique se você preparou o ambiente para o desenvolvimento em Python.

# Imports the Google Cloud client library
from google.cloud import language_v1

# Instantiates a client
client = language_v1.LanguageServiceClient()

# The text to analyze
text = "Hello, world!"
document = language_v1.types.Document(
    content=text, type_=language_v1.types.Document.Type.PLAIN_TEXT
)

# Detects the sentiment of the text
sentiment = client.analyze_sentiment(
    request={"document": document}
).document_sentiment

print(f"Text: {text}")
print(f"Sentiment: {sentiment.score}, {sentiment.magnitude}")

Parabéns! Você enviou a primeira solicitação para a Natural Language API.

Como foi?

Limpar

Para evitar cobranças na sua conta do Google Cloud pelos recursos usados nesta página, exclua o projeto do Google Cloud com esses recursos.

A seguir