Analyser des entités

L'analyse des entités inspecte le texte donné pour y rechercher des entités connues (des noms propres tels que des personnages publics, des points de repère, etc.), et renvoie des informations sur ces entités. L'analyse d'entités est effectuée avec la méthode analyzeEntities. Pour en savoir plus sur les types d'entités identifiés par Natural Language, consultez la documentation sur les Entités. Pour plus d'informations sur les langues compatibles avec l'API Natural Language, consultez la page Langues acceptées.

Cette section décrit plusieurs manières de détecter des entités dans un document. Vous devez envoyer une demande distincte pour chaque document.

Analyser des entités dans une chaîne

Voici un exemple d'analyse des entités sur une chaîne de texte envoyée directement à l'API Natural Language :

Protocole

Pour analyser des entités dans un document, envoyez une requête POST à la méthode REST documents:analyzeEntities et fournissez le corps de requête approprié comme illustré dans l'exemple suivant.

L'exemple utilise la commande gcloud auth application-default print-access-token pour obtenir un jeton d'accès pour un compte de service configuré pour le projet à l'aide de gcloud CLI de Google Cloud Platform. Pour obtenir des instructions d'installation de la gcloud CLI et configurer un projet avec un compte de service, consultez le guide de démarrage rapide.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Si vous ne spécifiez pas document.language_code, la langue est automatiquement détectée. Pour plus d'informations sur les langues acceptées par l'API Natural Language, consultez la page Langues acceptées. Pour en savoir plus sur la configuration du corps de la requête, reportez-vous à la documentation de référence sur Document.

Si la requête aboutit, le serveur renvoie un code d'état HTTP 200 OK et la réponse au format JSON :

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Le tableau entities contient des objets Entity représentant les entités détectées, qui incluent des informations telles que le nom et le type de l'entité.

gcloud

Reportez-vous à la commande analyze-entities pour obtenir tous les détails.

Pour effectuer une analyse des entités, utilisez la gcloud CLI et utilisez l'option --content pour identifier le contenu à analyser :

gcloud ml language analyze-entities --content="President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
       "name": "7",
       "type": "NUMBER",
       "metadata": {
         "value": "7"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "7",
             "beginOffset": 113
           },
         "type": "TYPE_UNKNOWN"
         }
        ]
     }
  ],
  "language": "en"
}

Le tableau entities contient des objets Entity représentant les entités détectées, qui incluent des informations telles que le nom et le type de l'entité.

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Go.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	language "cloud.google.com/go/language/apiv2"
	"cloud.google.com/go/language/apiv2/languagepb"
)

// analyzeEntities sends a string of text to the Cloud Natural Language API to
// detect the entities of the text.
func analyzeEntities(w io.Writer, text string) error {
	ctx := context.Background()

	// Initialize client.
	client, err := language.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	resp, err := client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})

	if err != nil {
		return fmt.Errorf("AnalyzeEntities: %w", err)
	}
	fmt.Fprintf(w, "Response: %q\n", resp)

	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Java.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Node.js.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});

const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Python.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import language_v2


def sample_analyze_entities(text_content: str = "California is a state.") -> None:
    """
    Analyzes Entities in a string.

    Args:
      text_content: The text content to analyze
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "content": text_content,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(f"Mention type: {language_v2.EntityMention.Type(mention.type_).name}")

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour PHP.

Ruby : Veuillez suivre les instructions de configuration de Ruby sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Natural Language pour Ruby.

Analyser des entités depuis Cloud Storage

L'API Natural Language peut effectuer une analyse des entités directement sur un fichier situé dans Cloud Storage, ce qui se révèle plus pratique car il n'est pas nécessaire d'envoyer le contenu du fichier dans le corps de la requête.

Voici un exemple d'analyse des entités sur un fichier situé dans Cloud Storage.

Protocole

Pour analyser des entités à partir d'un document stocké dans Cloud Storage, envoyez une requête POST à la méthode REST documents:analyzeEntities et fournissez un corps de requête approprié avec le chemin d'accès au document comme illustré dans l'exemple suivant.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Si vous ne spécifiez pas document.language_code, la langue est automatiquement détectée. Pour plus d'informations sur les langues acceptées par l'API Natural Language, consultez la page Langues acceptées. Pour en savoir plus sur la configuration du corps de la requête, reportez-vous à la documentation de référence sur Document.

Si la requête aboutit, le serveur renvoie un code d'état HTTP 200 OK et la réponse au format JSON :

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Le tableau entities contient des objets Entity représentant les entités détectées, qui incluent des informations telles que le nom et le type de l'entité.

gcloud

Reportez-vous à la commande analyze-entities pour obtenir tous les détails.

Pour effectuer une analyse d'entité sur un fichier dans Cloud Storage, utilisez l'outil de ligne de commande gcloud et utilisez l'indicateur --content-file pour identifier le chemin d'accès au contenu à analyser :

gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Le tableau entities contient des objets Entity représentant les entités détectées, qui incluent des informations telles que le nom et le type de l'entité.

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Go.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


func analyzeEntitiesFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnalyzeEntitiesResponse, error) {
	return client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Java.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // Set the GCS Content URI path to the file to be analyzed
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Node.js.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});
const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Python.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import language_v2


def sample_analyze_entities(
    gcs_content_uri: str = "gs://cloud-samples-data/language/entity.txt",
) -> None:
    """
    Analyzes Entities in text file stored in Cloud Storage.

    Args:
      gcs_content_uri: Google Cloud Storage URI where the file content is located.
        e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(
                "Mention type:" f" {language_v2.EntityMention.Type(mention.type_).name}"
            )

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour Ruby.