Get search results

This page shows how to preview search results using the Google Cloud console and get search results using the API.

Also, instead of creating a search widget to add to your web page, you can make API calls and integrate those calls into your server or application. This page includes code samples for how to make search queries using the gRPC client libraries with a service account.

Search summarization differs by model

If you generate search summaries for your queries, you might notice that the summaries differ between the console results and the API results. If you see this, the likely reason is that the console is using a different LLM model from the API. The curl and code examples on this page use the stable LLM model.

  • To change or view the LLM model used in the Preview page of the UI, go to the Configurations page > UI tab for your app.

  • For method calls, to use an LLM model other than the stable model, see Specify the summarization model.

Get search results for an app with website data

Console

To use the Google Cloud console to preview search results for an app with website data, follow these steps:

  1. In the Google Cloud console, go to the Agent Builder page.

    Agent Builder

  2. Click the name of the app that you want to edit.

  3. Click Preview.

  4. Open the Preview page in the console.

  5. Optional: If you connected multiple data stores to your app but want results only from a specific data store, select the data store to get results from.

  6. Type a search query.

    1. If you enabled autocomplete, you see a list of autocomplete suggestions below the search bar as you type.
  7. Click Enter to submit the query.

    1. A list of search results appears below the search bar.
    2. Each result contains a title, a snippet, and a URL.
    3. Clicking a result opens that URL.
  8. Click the arrow below the results list to load the next page of results.

REST

To use the API to get search results for an app with website data, use the engines.servingConfigs.search method:

  1. Find your app ID. If you already have your app ID, skip to the next step.

    1. In the Google Cloud console, go to the Agent Builder page.

      Go to Apps

    2. On the Apps page, find the name of your app and get the app's ID from the ID column.

  2. Get search results.

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:search" \
    -d '{
    "servingConfig": "projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search",
    "query": "QUERY",
    "pageSize": "PAGE_SIZE",
    "offset": "OFFSET",
    "orderBy": "ORDER_BY",
    "params": {"user_country_code": "USER_COUNTRY_CODE",
    "searchType": "SEARCH_TYPE"},
    "filter": "FILTER",
    "boostSpec": "BOOST_SPEC",
    "contentSearchSpec": {
       "searchResultMode": "RESULT_MODE"
     },
     "dataStoreSpec": {"DATA_STORE_SPEC"}
    }'
    
    • PROJECT_ID: the ID of your Google Cloud project.
    • APP_ID: the ID of the Vertex AI Search app that you want to query.
    • QUERY: the query text to search.
    • PAGE_SIZE: the number of results returned by the search. The maximum allowed page size depends on the data type. Page sizes above the maximum value are coerced to the maximum value.

      • Websites with basic indexing: Default 10, Maximum 25
      • Websites with advanced indexing: Default 25, Maximum 50
      • Other: Default 50, Maximum 100
    • OFFSET: the starting index of the results. The default value is 0.

      For example, if the offset is 2, the page size is 10, and there are 15 results to return, results 2 through 12 are returned on the first page.

    • ORDER_BY: the order in which the results are arranged. The attribute to sort on must have a numerical interpretation—for example, price or date.

    • USER_COUNTRY_CODE: the location of the user. This key-value pair is the only supported entry for the params map field. The default value is empty. For acceptable values, see Country Codes in the Programmable Search Engine JSON API reference documentation.

    • SEARCH_TYPE: the type of search to be performed. The default value is 0 for document search. The other supported value is 1 for image search.

    • FILTER: a text field for filtering your search using a filter expression. The default value is an empty string. For more information about using the filter field, see Filter website search.

    • BOOST_SPEC: optional. A specification to boost or bury documents. Values:

      • BOOST: a floating point number between -1 and 1. When the value is negative, results are demoted (they appear lower down in the results). When the value is positive, results are promoted (they appear higher up in the results).
      • CONDITION: a text filter expression to select the documents to which boost is applied. The filter must evaluate to a boolean value. To learn about boost for structured search, see Boost search results.
    • RESULT_MODE: determines whether search results are returned as full documents or in chunks. To get chunks, the data store must have document chunking turned on. Accepted values are documents and chunks. When chunking is turned on for a data store, the default value is chunks. Otherwise, the default is documents. For information about document chunking, see Parse and chunk documents. This field is in Public preview; to use it, change v1 to v1alpha in the curl command.

    • DATA_STORE_SPEC: filters for a specific data store to search across. Use dataStoreSpec if your search app is connected to multiple data stores but you want results from a specific data store.

C#

For more information, see the Vertex AI Agent Builder C# API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

using Google.Api.Gax;
using Google.Cloud.DiscoveryEngine.V1Beta;
using Google.Protobuf.WellKnownTypes;
using System;

public sealed partial class GeneratedSearchServiceClientSnippets
{
    /// <summary>Snippet for Search</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void SearchRequestObject()
    {
        // Create client
        SearchServiceClient searchServiceClient = SearchServiceClient.Create();
        // Initialize request argument(s)
        SearchRequest request = new SearchRequest
        {
            ServingConfigAsServingConfigName = ServingConfigName.FromProjectLocationDataStoreServingConfig("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SERVING_CONFIG]"),
            BranchAsBranchName = BranchName.FromProjectLocationDataStoreBranch("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]"),
            Query = "",
            Offset = 0,
            Filter = "",
            OrderBy = "",
            FacetSpecs =
            {
                new SearchRequest.Types.FacetSpec(),
            },
            BoostSpec = new SearchRequest.Types.BoostSpec(),
            Params = { { "", new Value() }, },
            QueryExpansionSpec = new SearchRequest.Types.QueryExpansionSpec(),
            SpellCorrectionSpec = new SearchRequest.Types.SpellCorrectionSpec(),
            UserPseudoId = "",
            ImageQuery = new SearchRequest.Types.ImageQuery(),
            SafeSearch = false,
            UserInfo = new UserInfo(),
            UserLabels = { { "", "" }, },
            EmbeddingSpec = new SearchRequest.Types.EmbeddingSpec(),
            ContentSearchSpec = new SearchRequest.Types.ContentSearchSpec(),
            RankingExpression = "",
            NaturalLanguageQueryUnderstandingSpec = new SearchRequest.Types.NaturalLanguageQueryUnderstandingSpec(),
            CanonicalFilter = "",
            SearchAsYouTypeSpec = new SearchRequest.Types.SearchAsYouTypeSpec(),
            DataStoreSpecs =
            {
                new SearchRequest.Types.DataStoreSpec(),
            },
            LanguageCode = "",
            RegionCode = "",
            SessionAsSessionName = SessionName.FromProjectLocationDataStoreSession("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SESSION]"),
            SessionSpec = new SearchRequest.Types.SessionSpec(),
            RelevanceThreshold = SearchRequest.Types.RelevanceThreshold.Unspecified,
            PersonalizationSpec = new SearchRequest.Types.PersonalizationSpec(),
            OneBoxPageSize = 0,
        };
        // Make the request
        PagedEnumerable<SearchResponse, SearchResponse.Types.SearchResult> response = searchServiceClient.Search(request);

        // Iterate over all response items, lazily performing RPCs as required
        foreach (SearchResponse.Types.SearchResult item in response)
        {
            // Do something with each item
            Console.WriteLine(item);
        }

        // Or iterate over pages (of server-defined size), performing one RPC per page
        foreach (SearchResponse page in response.AsRawResponses())
        {
            // Do something with each page of items
            Console.WriteLine("A page of results:");
            foreach (SearchResponse.Types.SearchResult item in page)
            {
                // Do something with each item
                Console.WriteLine(item);
            }
        }

        // Or retrieve a single page of known size (unless it's the final page), performing as many RPCs as required
        int pageSize = 10;
        Page<SearchResponse.Types.SearchResult> singlePage = response.ReadPage(pageSize);
        // Do something with the page of items
        Console.WriteLine($"A page of {pageSize} results (unless it's the final page):");
        foreach (SearchResponse.Types.SearchResult item in singlePage)
        {
            // Do something with each item
            Console.WriteLine(item);
        }
        // Store the pageToken, for when the next page is required.
        string nextPageToken = singlePage.NextPageToken;
    }
}

Java

For more information, see the Vertex AI Agent Builder Java API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.cloud.discoveryengine.v1.SearchRequest;
import com.google.cloud.discoveryengine.v1.SearchResponse;
import com.google.cloud.discoveryengine.v1.SearchServiceClient;
import com.google.cloud.discoveryengine.v1.SearchServiceSettings;
import com.google.cloud.discoveryengine.v1.ServingConfigName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

public class Search {
  public static void main() throws IOException, ExecutionException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Cloud project you want to use.
    String projectId = "PROJECT_ID";
    // Location of the data store. Options: "global", "us", "eu"
    String location = "global";
    // Collection containing the data store.
    String collectionId = "default_collection";
    // Data store ID.
    String dataStoreId = "DATA_STORE_ID";
    // Serving configuration. Options: "default_search"
    String servingConfigId = "default_search";
    // Search Query for the data store.
    String searchQuery = "Google";
    search(projectId, location, collectionId, dataStoreId, servingConfigId, searchQuery);
  }

  /** Performs a search on a given datastore. */
  public static void search(
      String projectId,
      String location,
      String collectionId,
      String dataStoreId,
      String servingConfigId,
      String searchQuery)
      throws IOException, ExecutionException {
    // For more information, refer to:
    // https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    String endpoint = (location.equals("global")) 
        ? String.format("discoveryengine.googleapis.com:443", location) 
        : String.format("%s-discoveryengine.googleapis.com:443", location);
    SearchServiceSettings settings =
        SearchServiceSettings.newBuilder().setEndpoint(endpoint).build();
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the `searchServiceClient.close()` method on the client to safely
    // clean up any remaining background resources.
    try (SearchServiceClient searchServiceClient = SearchServiceClient.create(settings)) {
      SearchRequest request =
          SearchRequest.newBuilder()
              .setServingConfig(
                  ServingConfigName.formatProjectLocationCollectionDataStoreServingConfigName(
                      projectId, location, collectionId, dataStoreId, servingConfigId))
              .setQuery(searchQuery)
              .setPageSize(10)
              .build();
      SearchResponse response = searchServiceClient.search(request).getPage().getResponse();
      for (SearchResponse.SearchResult element : response.getResultsList()) {
        System.out.println("Response content: " + element);
      }
    }
  }
}

Node.js

For more information, see the Vertex AI Agent Builder Node.js API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_LOCATION';              // Options: 'global', 'us', 'eu'
// const collectionId = 'default_collection';     // Options: 'default_collection'
// const dataStoreId = 'YOUR_DATA_STORE_ID'       // Create in Cloud Console
// const servingConfigId = 'default_config';      // Options: 'default_config'
// const searchQuery = 'Google';

const {SearchServiceClient} = require('@google-cloud/discoveryengine').v1beta;

// For more information, refer to:
// https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
const apiEndpoint =
  location === 'global'
    ? 'discoveryengine.googleapis.com'
    : `${location}-discoveryengine.googleapis.com`;

// Instantiates a client
const client = new SearchServiceClient({apiEndpoint: apiEndpoint});

async function search() {
  // The full resource name of the search engine serving configuration.
  // Example: projects/{projectId}/locations/{location}/collections/{collectionId}/dataStores/{dataStoreId}/servingConfigs/{servingConfigId}
  // You must create a search engine in the Cloud Console first.
  const name = client.projectLocationCollectionDataStoreServingConfigPath(
    projectId,
    location,
    collectionId,
    dataStoreId,
    servingConfigId
  );

  const request = {
    pageSize: 10,
    query: searchQuery,
    servingConfig: name,
  };

  const IResponseParams = {
    ISearchResult: 0,
    ISearchRequest: 1,
    ISearchResponse: 2,
  };

  // Perform search request
  const response = await client.search(request, {
    // Warning: Should always disable autoPaginate to avoid iterate through all pages.
    //
    // By default NodeJS SDK returns an iterable where you can iterate through all
    // search results instead of only the limited number of results requested on
    // pageSize, by sending multiple sequential search requests page-by-page while
    // iterating, until it exhausts all the search results. This will be unexpected and
    // may cause high Search API usage and long wait time, especially when the matched
    // document numbers are huge.
    autoPaginate: false,
  });
  const results = response[IResponseParams.ISearchResponse].results;

  for (const result of results) {
    console.log(result);
  }
}

PHP

For more information, see the Vertex AI Agent Builder PHP API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

use Google\ApiCore\ApiException;
use Google\ApiCore\PagedListResponse;
use Google\Cloud\DiscoveryEngine\V1beta\Client\SearchServiceClient;
use Google\Cloud\DiscoveryEngine\V1beta\SearchRequest;
use Google\Cloud\DiscoveryEngine\V1beta\SearchResponse\SearchResult;

/**
 * Performs a search.
 *
 * @param string $formattedServingConfig The resource name of the Search serving config, such as
 *                                       `projects/&#42;/locations/global/collections/default_collection/engines/&#42;/servingConfigs/default_serving_config`,
 *                                       or
 *                                       `projects/&#42;/locations/global/collections/default_collection/dataStores/default_data_store/servingConfigs/default_serving_config`.
 *                                       This field is used to identify the serving configuration name, set
 *                                       of models used to make the search. Please see
 *                                       {@see SearchServiceClient::servingConfigName()} for help formatting this field.
 */
function search_sample(string $formattedServingConfig): void
{
    // Create a client.
    $searchServiceClient = new SearchServiceClient();

    // Prepare the request message.
    $request = (new SearchRequest())
        ->setServingConfig($formattedServingConfig);

    // Call the API and handle any network failures.
    try {
        /** @var PagedListResponse $response */
        $response = $searchServiceClient->search($request);

        /** @var SearchResult $element */
        foreach ($response as $element) {
            printf('Element data: %s' . PHP_EOL, $element->serializeToJsonString());
        }
    } catch (ApiException $ex) {
        printf('Call failed with message: %s' . PHP_EOL, $ex->getMessage());
    }
}

/**
 * Helper to execute the sample.
 *
 * This sample has been automatically generated and should be regarded as a code
 * template only. It will require modifications to work:
 *  - It may require correct/in-range values for request initialization.
 *  - It may require specifying regional endpoints when creating the service client,
 *    please see the apiEndpoint client configuration option for more details.
 */
function callSample(): void
{
    $formattedServingConfig = SearchServiceClient::servingConfigName(
        '[PROJECT]',
        '[LOCATION]',
        '[DATA_STORE]',
        '[SERVING_CONFIG]'
    );

    search_sample($formattedServingConfig);
}

Python

For more information, see the Vertex AI Agent Builder Python API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from typing import List

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"          # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"
# search_query = "YOUR_SEARCH_QUERY"


def search_sample(
    project_id: str,
    location: str,
    engine_id: str,
    search_query: str,
) -> List[discoveryengine.SearchResponse]:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.SearchServiceClient(client_options=client_options)

    # The full resource name of the search app serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_config"

    # Optional - only supported for unstructured data: Configuration options for search.
    # Refer to the `ContentSearchSpec` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest.ContentSearchSpec
    content_search_spec = discoveryengine.SearchRequest.ContentSearchSpec(
        # For information about snippets, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/snippets
        snippet_spec=discoveryengine.SearchRequest.ContentSearchSpec.SnippetSpec(
            return_snippet=True
        ),
        # For information about search summaries, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries
        summary_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec(
            summary_result_count=5,
            include_citations=True,
            ignore_adversarial_query=True,
            ignore_non_summary_seeking_query=True,
            model_prompt_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec(
                preamble="YOUR_CUSTOM_PROMPT"
            ),
            model_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelSpec(
                version="stable",
            ),
        ),
    )

    # Refer to the `SearchRequest` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest
    request = discoveryengine.SearchRequest(
        serving_config=serving_config,
        query=search_query,
        page_size=10,
        content_search_spec=content_search_spec,
        query_expansion_spec=discoveryengine.SearchRequest.QueryExpansionSpec(
            condition=discoveryengine.SearchRequest.QueryExpansionSpec.Condition.AUTO,
        ),
        spell_correction_spec=discoveryengine.SearchRequest.SpellCorrectionSpec(
            mode=discoveryengine.SearchRequest.SpellCorrectionSpec.Mode.AUTO
        ),
    )

    response = client.search(request)
    print(response)

    return response

Ruby

For more information, see the Vertex AI Agent Builder Ruby API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

require "google/cloud/discovery_engine/v1beta"

##
# Snippet for the search call in the SearchService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1beta::SearchService::Client#search.
#
def search
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1beta::SearchService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1beta::SearchRequest.new

  # Call the search method.
  result = client.search request

  # The returned object is of type Gapic::PagedEnumerable. You can iterate
  # over elements, and API calls will be issued to fetch pages as needed.
  result.each do |item|
    # Each element is of type ::Google::Cloud::DiscoveryEngine::V1beta::SearchResponse::SearchResult.
    p item
  end
end

Get search results for an app with structured or unstructured data

You can preview search results from the Google Cloud console or get search results using the API.

Console

To use the Google Cloud console to preview search results for an app with structured or unstructured data, follow these steps:

  1. Open the Preview page in the console.
  2. Type a search query.
    1. If you enabled autocomplete in step 1, you'll see a list of autocomplete suggestions below the search bar as you type.
  3. (Optional) If you connected multiple data stores to your app but want results only from a specific data store, select the data store to get results from.
  4. Click Enter to submit the query.
    1. A list of search results appears below the search bar.
    2. If no attribute mapping is defined in the Configurations page, each search result appears as a list of raw attribute names and values.
    3. If any attribute mappings were saved in the Configurations page, the search results display the same images that you see in the Configurations page preview.
  5. If any facets were specified in the Configurations page, they are displayed in the same way.
  6. Click the arrow below the results list to load the next page of results.

REST

To use the API to get search results for an app with structured or unstructured data, use the engines.servingConfigs.search method:

  1. Find your app ID. If you already have your app ID, skip to the next step.

    1. In the Google Cloud console, go to the Agent Builder page.

      Go to Apps

    2. On the Apps page, find the name of your app and get the app's ID from the ID column.

  2. Get search results.

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:search" \
    -d '{
    "query": "QUERY",
    "userPseudoId": "USER_PSEUDO_ID",
    "pageSize": "PAGE_SIZE",
    "offset": "OFFSET",
    "orderBy": "ORDER_BY",
    "filter": "FILTER",
    "boostSpec": "BOOST_SPEC",
    "facetSpec": "FACET_SPEC",
    "queryExpansionSpec": "QUERY_EXPANSION_SPEC",
    "spellCorrectionSpec": "SPELL_CORRECTION_SPEC",
    "contentSearchSpec": "CONTENT_SEARCH_SPEC",
    "dataStoreSpec": {"DATA_STORE_SPEC"},
    }'
    
    • PROJECT_ID: the ID of your Google Cloud project.
    • APP_ID: the ID of the Vertex AI Search app that you want to query.
    • QUERY: the query text to search.
    • USER_PSEUDO_ID: optional. This is a pseudonymized identifier for tracking a search visitor. Google strongly recommends using this field, which improves model performance and personalization quality. You can use an HTTP cookie for this field, which uniquely identifies a visitor on a single device. This identifier does not change when the visitor signs in or out of a website. Don't set this field to the same identifier for multiple users—this would combine their event histories and degrade model quality. Don't include personally identifiable information (PII) in this field.
    • PAGE_SIZE: the number of results returned by the search. The maximum allowed page size depends on the data type. Page sizes above the maximum value are coerced to the maximum value.

      • Websites with basic indexing: Default 10, Maximum 25
      • Websites with advanced indexing: Default 25, Maximum 50
      • Other: Default 50, Maximum 100
    • OFFSET: optional. The starting index of the results. The default value is 0.

      For example, if the offset is 2, the page size is 10, and there are 15 results to return, results 2 through 11 are returned on the first page.

    • ORDER_BY: optional. The order in which the results are arranged.

    • FILTER: optional. A text field for filtering your search using a filter expression. The default value is an empty string, which means no filter is applied.

      Example: color: ANY("red", "blue") AND score: IN(*, 100.0e)

      For more information, see Filter search for structured or unstructured data.

    • BOOST_SPEC: optional. A specification to boost or bury documents. Values:

      • BOOST: a floating point number between -1 and 1. When the value is negative, results are demoted (they appear lower down in the results). When the value is positive, results are promoted (they appear higher up in the results).
      • CONDITION: a text filter expression to select the documents to which boost is applied. The filter must evaluate to a boolean value.

      To learn about boost for structured search, see Boost search results.

    • FACET_SPEC: optional. A facet specification to perform faceted search.

    • QUERY_EXPANSION_SPEC: optional. A specification to determine under which conditions query expansion should occur. Default is DISABLED.

    • SPELL_CORRECTION_SPEC: optional. A specification to determine under which conditions spell correction should occur. Default is AUTO.

    • CONTENT_SEARCH_SPEC: optional. For getting snippets, extractive answers, extractive segments, and search summaries. For unstructured data only. For more information, see:

    • DATA_STORE_SPEC: filters for a specific data store to search across. This can be used if your search app is connected to multiple data stores.

    • Viewing guided search results in the search response:

      Guided search results are returned with search responses for structured and unstructured search. The guided search result contains a list of extracted attribute key-value pairs based on search result documents. This allows users to refine their search results by using some attribute keys and values as filters.

      In this example response, the color green was used to refine search results by issuing a new search request with the filter field specified as _gs.color: ANY("green"):

      {
      "guidedSearchResult": {
        "refinementAttributes": [
          {
            "attributeKey": "_gs.color",
            "attributeValue" : "green"
          },
          {
            "attributeKey": "_gs.category",
            "attributeValue" : "shoe"
          }
        ]
      }
      }
      

C#

For more information, see the Vertex AI Agent Builder C# API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

using Google.Api.Gax;
using Google.Cloud.DiscoveryEngine.V1Beta;
using Google.Protobuf.WellKnownTypes;
using System;

public sealed partial class GeneratedSearchServiceClientSnippets
{
    /// <summary>Snippet for Search</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void SearchRequestObject()
    {
        // Create client
        SearchServiceClient searchServiceClient = SearchServiceClient.Create();
        // Initialize request argument(s)
        SearchRequest request = new SearchRequest
        {
            ServingConfigAsServingConfigName = ServingConfigName.FromProjectLocationDataStoreServingConfig("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SERVING_CONFIG]"),
            BranchAsBranchName = BranchName.FromProjectLocationDataStoreBranch("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]"),
            Query = "",
            Offset = 0,
            Filter = "",
            OrderBy = "",
            FacetSpecs =
            {
                new SearchRequest.Types.FacetSpec(),
            },
            BoostSpec = new SearchRequest.Types.BoostSpec(),
            Params = { { "", new Value() }, },
            QueryExpansionSpec = new SearchRequest.Types.QueryExpansionSpec(),
            SpellCorrectionSpec = new SearchRequest.Types.SpellCorrectionSpec(),
            UserPseudoId = "",
            ImageQuery = new SearchRequest.Types.ImageQuery(),
            SafeSearch = false,
            UserInfo = new UserInfo(),
            UserLabels = { { "", "" }, },
            EmbeddingSpec = new SearchRequest.Types.EmbeddingSpec(),
            ContentSearchSpec = new SearchRequest.Types.ContentSearchSpec(),
            RankingExpression = "",
            NaturalLanguageQueryUnderstandingSpec = new SearchRequest.Types.NaturalLanguageQueryUnderstandingSpec(),
            CanonicalFilter = "",
            SearchAsYouTypeSpec = new SearchRequest.Types.SearchAsYouTypeSpec(),
            DataStoreSpecs =
            {
                new SearchRequest.Types.DataStoreSpec(),
            },
            LanguageCode = "",
            RegionCode = "",
            SessionAsSessionName = SessionName.FromProjectLocationDataStoreSession("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SESSION]"),
            SessionSpec = new SearchRequest.Types.SessionSpec(),
            RelevanceThreshold = SearchRequest.Types.RelevanceThreshold.Unspecified,
            PersonalizationSpec = new SearchRequest.Types.PersonalizationSpec(),
            OneBoxPageSize = 0,
        };
        // Make the request
        PagedEnumerable<SearchResponse, SearchResponse.Types.SearchResult> response = searchServiceClient.Search(request);

        // Iterate over all response items, lazily performing RPCs as required
        foreach (SearchResponse.Types.SearchResult item in response)
        {
            // Do something with each item
            Console.WriteLine(item);
        }

        // Or iterate over pages (of server-defined size), performing one RPC per page
        foreach (SearchResponse page in response.AsRawResponses())
        {
            // Do something with each page of items
            Console.WriteLine("A page of results:");
            foreach (SearchResponse.Types.SearchResult item in page)
            {
                // Do something with each item
                Console.WriteLine(item);
            }
        }

        // Or retrieve a single page of known size (unless it's the final page), performing as many RPCs as required
        int pageSize = 10;
        Page<SearchResponse.Types.SearchResult> singlePage = response.ReadPage(pageSize);
        // Do something with the page of items
        Console.WriteLine($"A page of {pageSize} results (unless it's the final page):");
        foreach (SearchResponse.Types.SearchResult item in singlePage)
        {
            // Do something with each item
            Console.WriteLine(item);
        }
        // Store the pageToken, for when the next page is required.
        string nextPageToken = singlePage.NextPageToken;
    }
}

Java

For more information, see the Vertex AI Agent Builder Java API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.cloud.discoveryengine.v1.SearchRequest;
import com.google.cloud.discoveryengine.v1.SearchResponse;
import com.google.cloud.discoveryengine.v1.SearchServiceClient;
import com.google.cloud.discoveryengine.v1.SearchServiceSettings;
import com.google.cloud.discoveryengine.v1.ServingConfigName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

public class Search {
  public static void main() throws IOException, ExecutionException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Cloud project you want to use.
    String projectId = "PROJECT_ID";
    // Location of the data store. Options: "global", "us", "eu"
    String location = "global";
    // Collection containing the data store.
    String collectionId = "default_collection";
    // Data store ID.
    String dataStoreId = "DATA_STORE_ID";
    // Serving configuration. Options: "default_search"
    String servingConfigId = "default_search";
    // Search Query for the data store.
    String searchQuery = "Google";
    search(projectId, location, collectionId, dataStoreId, servingConfigId, searchQuery);
  }

  /** Performs a search on a given datastore. */
  public static void search(
      String projectId,
      String location,
      String collectionId,
      String dataStoreId,
      String servingConfigId,
      String searchQuery)
      throws IOException, ExecutionException {
    // For more information, refer to:
    // https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    String endpoint = (location.equals("global")) 
        ? String.format("discoveryengine.googleapis.com:443", location) 
        : String.format("%s-discoveryengine.googleapis.com:443", location);
    SearchServiceSettings settings =
        SearchServiceSettings.newBuilder().setEndpoint(endpoint).build();
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the `searchServiceClient.close()` method on the client to safely
    // clean up any remaining background resources.
    try (SearchServiceClient searchServiceClient = SearchServiceClient.create(settings)) {
      SearchRequest request =
          SearchRequest.newBuilder()
              .setServingConfig(
                  ServingConfigName.formatProjectLocationCollectionDataStoreServingConfigName(
                      projectId, location, collectionId, dataStoreId, servingConfigId))
              .setQuery(searchQuery)
              .setPageSize(10)
              .build();
      SearchResponse response = searchServiceClient.search(request).getPage().getResponse();
      for (SearchResponse.SearchResult element : response.getResultsList()) {
        System.out.println("Response content: " + element);
      }
    }
  }
}

Node.js

For more information, see the Vertex AI Agent Builder Node.js API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_LOCATION';              // Options: 'global', 'us', 'eu'
// const collectionId = 'default_collection';     // Options: 'default_collection'
// const dataStoreId = 'YOUR_DATA_STORE_ID'       // Create in Cloud Console
// const servingConfigId = 'default_config';      // Options: 'default_config'
// const searchQuery = 'Google';

const {SearchServiceClient} = require('@google-cloud/discoveryengine').v1beta;

// For more information, refer to:
// https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
const apiEndpoint =
  location === 'global'
    ? 'discoveryengine.googleapis.com'
    : `${location}-discoveryengine.googleapis.com`;

// Instantiates a client
const client = new SearchServiceClient({apiEndpoint: apiEndpoint});

async function search() {
  // The full resource name of the search engine serving configuration.
  // Example: projects/{projectId}/locations/{location}/collections/{collectionId}/dataStores/{dataStoreId}/servingConfigs/{servingConfigId}
  // You must create a search engine in the Cloud Console first.
  const name = client.projectLocationCollectionDataStoreServingConfigPath(
    projectId,
    location,
    collectionId,
    dataStoreId,
    servingConfigId
  );

  const request = {
    pageSize: 10,
    query: searchQuery,
    servingConfig: name,
  };

  const IResponseParams = {
    ISearchResult: 0,
    ISearchRequest: 1,
    ISearchResponse: 2,
  };

  // Perform search request
  const response = await client.search(request, {
    // Warning: Should always disable autoPaginate to avoid iterate through all pages.
    //
    // By default NodeJS SDK returns an iterable where you can iterate through all
    // search results instead of only the limited number of results requested on
    // pageSize, by sending multiple sequential search requests page-by-page while
    // iterating, until it exhausts all the search results. This will be unexpected and
    // may cause high Search API usage and long wait time, especially when the matched
    // document numbers are huge.
    autoPaginate: false,
  });
  const results = response[IResponseParams.ISearchResponse].results;

  for (const result of results) {
    console.log(result);
  }
}

PHP

For more information, see the Vertex AI Agent Builder PHP API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

use Google\ApiCore\ApiException;
use Google\ApiCore\PagedListResponse;
use Google\Cloud\DiscoveryEngine\V1beta\Client\SearchServiceClient;
use Google\Cloud\DiscoveryEngine\V1beta\SearchRequest;
use Google\Cloud\DiscoveryEngine\V1beta\SearchResponse\SearchResult;

/**
 * Performs a search.
 *
 * @param string $formattedServingConfig The resource name of the Search serving config, such as
 *                                       `projects/&#42;/locations/global/collections/default_collection/engines/&#42;/servingConfigs/default_serving_config`,
 *                                       or
 *                                       `projects/&#42;/locations/global/collections/default_collection/dataStores/default_data_store/servingConfigs/default_serving_config`.
 *                                       This field is used to identify the serving configuration name, set
 *                                       of models used to make the search. Please see
 *                                       {@see SearchServiceClient::servingConfigName()} for help formatting this field.
 */
function search_sample(string $formattedServingConfig): void
{
    // Create a client.
    $searchServiceClient = new SearchServiceClient();

    // Prepare the request message.
    $request = (new SearchRequest())
        ->setServingConfig($formattedServingConfig);

    // Call the API and handle any network failures.
    try {
        /** @var PagedListResponse $response */
        $response = $searchServiceClient->search($request);

        /** @var SearchResult $element */
        foreach ($response as $element) {
            printf('Element data: %s' . PHP_EOL, $element->serializeToJsonString());
        }
    } catch (ApiException $ex) {
        printf('Call failed with message: %s' . PHP_EOL, $ex->getMessage());
    }
}

/**
 * Helper to execute the sample.
 *
 * This sample has been automatically generated and should be regarded as a code
 * template only. It will require modifications to work:
 *  - It may require correct/in-range values for request initialization.
 *  - It may require specifying regional endpoints when creating the service client,
 *    please see the apiEndpoint client configuration option for more details.
 */
function callSample(): void
{
    $formattedServingConfig = SearchServiceClient::servingConfigName(
        '[PROJECT]',
        '[LOCATION]',
        '[DATA_STORE]',
        '[SERVING_CONFIG]'
    );

    search_sample($formattedServingConfig);
}

Python

For more information, see the Vertex AI Agent Builder Python API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from typing import List

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"          # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"
# search_query = "YOUR_SEARCH_QUERY"


def search_sample(
    project_id: str,
    location: str,
    engine_id: str,
    search_query: str,
) -> List[discoveryengine.SearchResponse]:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.SearchServiceClient(client_options=client_options)

    # The full resource name of the search app serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_config"

    # Optional - only supported for unstructured data: Configuration options for search.
    # Refer to the `ContentSearchSpec` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest.ContentSearchSpec
    content_search_spec = discoveryengine.SearchRequest.ContentSearchSpec(
        # For information about snippets, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/snippets
        snippet_spec=discoveryengine.SearchRequest.ContentSearchSpec.SnippetSpec(
            return_snippet=True
        ),
        # For information about search summaries, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries
        summary_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec(
            summary_result_count=5,
            include_citations=True,
            ignore_adversarial_query=True,
            ignore_non_summary_seeking_query=True,
            model_prompt_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec(
                preamble="YOUR_CUSTOM_PROMPT"
            ),
            model_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelSpec(
                version="stable",
            ),
        ),
    )

    # Refer to the `SearchRequest` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest
    request = discoveryengine.SearchRequest(
        serving_config=serving_config,
        query=search_query,
        page_size=10,
        content_search_spec=content_search_spec,
        query_expansion_spec=discoveryengine.SearchRequest.QueryExpansionSpec(
            condition=discoveryengine.SearchRequest.QueryExpansionSpec.Condition.AUTO,
        ),
        spell_correction_spec=discoveryengine.SearchRequest.SpellCorrectionSpec(
            mode=discoveryengine.SearchRequest.SpellCorrectionSpec.Mode.AUTO
        ),
    )

    response = client.search(request)
    print(response)

    return response

Ruby

For more information, see the Vertex AI Agent Builder Ruby API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

require "google/cloud/discovery_engine/v1beta"

##
# Snippet for the search call in the SearchService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1beta::SearchService::Client#search.
#
def search
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1beta::SearchService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1beta::SearchRequest.new

  # Call the search method.
  result = client.search request

  # The returned object is of type Gapic::PagedEnumerable. You can iterate
  # over elements, and API calls will be issued to fetch pages as needed.
  result.each do |item|
    # Each element is of type ::Google::Cloud::DiscoveryEngine::V1beta::SearchResponse::SearchResult.
    p item
  end
end

For media search, Vertex AI Agent Builder offers two kinds of search behavior:

  • The user types the search query and presses enter. This is the default and is the same behavior as search in the widget and search for non-media (generic) apps. See Get search results for an app with structured or unstructured data.

  • A new search result is returned after each letter that the user enters. This is called search-as-you-type and is particularly helpful for users who are entering their search queries through more awkward interfaces such as the remote control for a television.

To get search-as-you-type results for a media app:

Console

To use the Google Cloud console to enable search-as-you-type for a widget app:

  1. In the Google Cloud console, go to the Agent Builder page.

    Agent Builder

  2. Click the name of the media search app that you want to use search-as-you-type for.

  3. Click Configurations.

  4. Click the UI tab.

  5. Click the Enable search-as-you-type toggle.

  6. In the Preview pane, start typing a query.

    The search results update after each keystroke.

  7. To keep the search-as-you-type-setting, click Save and publish.

REST

Use the dataStores.servingConfigs.search method to get search results for a media app:

  1. Find your app ID. If you already have your app ID, skip to the next step.

    1. In the Google Cloud console, go to the Agent Builder page.

      Go to Apps

    2. On the Apps page, find the name of your app and get the app's ID from the ID column.

  2. Run the following curl command to get search-as-you-type results.

    All the fields except for contentSearchSpec can be used in conjunction with the searchAsYouTypeSpec field. For clarity, the optional fields have been omitted from the curl command. For the optional fields, see Get search results for an app with structured or unstructured data.

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:search" \
    -d '{
    "query": "QUERY",
    "searchAsYouTypeSpec": {"condition": "ENABLED"}
    }'
    
    • PROJECT_ID: the ID of your Google Cloud project.
    • APP_ID: the ID of the Vertex AI Search app that you want to query.
    • QUERY: the query text to search.

    Click for an example curl command.

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
    -H "Content-Type: application/json"
    "https://discoveryengine.googleapis.com/v1/projects/12345/locations/global/collections/default_collection/engines/my-app_4321/servingConfigs/default_search:search"
    -d '{
         "query": "midsummer night",
         "searchAsYouTypeSpec": {"condition": "ENABLED"}
        }'

Next steps