Obtén respuestas y seguimientos

En esta página, se presenta la búsqueda con respuestas y preguntas adicionales para Vertex AI Search y se muestra cómo implementarla en apps de búsqueda genéricas con llamadas a métodos.

La búsqueda con respuestas y preguntas adicionales se basa en el método de respuesta. El método de respuesta reemplaza las funciones de resumen del método search anterior y todas las funciones del método converse obsoleto. El método de respuesta también tiene algunas características adicionales importantes, como el y la capacidad de manejar consultas complejas.

Funciones del método de respuesta

Las funciones clave del método de respuesta son las siguientes:

  • La capacidad de generar respuestas para consultas complejas. Por ejemplo, el método de respuesta puede desglosar las consultas compuestas, como la siguiente, en varias consultas más pequeñas para mostrar mejores resultados que se usan para generar mejores respuestas:

    • "¿Cuáles son los ingresos respectivos de Google Cloud y Google Ads en 2024?"
    • "Después de cuántos años desde su fundación, ¿Google alcanzó los USD 1,000 millones ingresos?".
  • La capacidad de combinar la búsqueda y la generación de respuestas en una conversación de varios turnos llamando al método de respuesta en cada turno

  • La capacidad de vincularse con el método de búsqueda para reducir la latencia de búsqueda Puedes llamar al método de búsqueda y al método de respuesta por separado, y renderizar los resultados de la búsqueda y las respuestas en diferentes iframes en diferentes momentos. Esta significa que puedes mostrar a los usuarios resultados de la búsqueda (los 10 vínculos azules) en milisegundos. No es necesario que esperes a que se generen las respuestas para poder mostrar los resultados de la búsqueda.

Las características de respuesta y seguimiento pueden dividirse en tres fases de la consulta: buscar y responder:

Cuándo usar la respuesta y cuándo usar la búsqueda

Vertex AI Search tiene dos métodos que se usan para consultar apps. Tienen diferentes, pero los atributos que se superponen.

Usa el método answer en los siguientes casos:

  • Quieres una respuesta (o resumen) generada por IA de los resultados de la búsqueda.

  • Quieres realizar búsquedas de varios turnos, es decir, búsquedas que conservan el contexto para permitir preguntas adicionales.

Usa el método search en las siguientes situaciones:

  • Solo necesitas los resultados de la búsqueda, no una respuesta generada.

  • Quieres que se muestren más de diez resultados de la búsqueda ("vínculos azules").

  • Tienes alguno de los siguientes estados:

    • Datos multimedia o de atención médica
    • Tus propias incorporaciones
    • Controles de sinónimos o redireccionamientos
    • Facetas
    • Códigos de país de los usuarios

Usa los métodos de respuesta y búsqueda juntos en las siguientes situaciones:

  • Quieres mostrar más de diez resultados de la búsqueda y quieres una respuesta generada.

  • Tienes problemas de latencia y deseas mostrar y mostrar los resultados de la búsqueda rápidamente antes de que se muestre la respuesta generada.

Funciones de la fase de consulta

La función de respuesta y seguimiento admite el procesamiento de consultas en lenguaje natural.

En esta sección, se describen y se ilustran las diversas opciones de reformulación y clasificación de consultas.

Reformulación de consultas

La reformulación de consultas está activada de forma predeterminada. Esta función elige la mejor manera de reformular las consultas automáticamente para mejorar los resultados de la búsqueda. Esta función también puede controlar que no requieren reformulación.

  • Divide consultas complejas en varias consultas y realiza operaciones síncronas subconsulta.

    Por ejemplo, una consulta compleja se divide en cuatro consultas más pequeñas y simples.

    Entrada del usuario Subconsultas creadas a partir de la consulta compleja
    ¿Qué trabajos y pasatiempos tienen en común Andie Ram y Arnaud Clément?
    • Ocupación de Andie Ram
    • Ocupación de Arnaud Clément
    • Pasatiempo de Andie Ram
    • Pasatiempo de Arnaud Clément
  • Sintetiza las consultas de varios turnos para que las preguntas adicionales sean conscientes del contexto y tengan estado.

    Por ejemplo, las consultas sintetizadas a partir de la entrada del usuario en cada turno pueden verse así:

    Entrada del usuario Consulta sintetizada
    Turno 1: laptops para la escuela laptops para la escuela
    Turno 2: no en Mac laptops para la escuela, no mac
    Turno 3: pantalla más grande y también necesito teclado inalámbrico y ratón laptops con pantallas más grandes para la escuela, no Mac, con teclado y mouse inalámbricos
    Cumplido 4: y una mochila laptops de pantalla más grande para la escuela, no Mac, con teclado y mouse inalámbricos, y una mochila para ellas
  • Simplifica las consultas largas para mejorar la recuperación.

    Por ejemplo, una consulta larga se abrevia como una consulta simple.

    Entrada del usuario Consulta simplificada
    Estoy tratando de averiguar por qué el botón “Agregar al carrito” de nuestro sitio web no funciona correctamente. Al parecer, cuando un usuario hace clic en el botón, el artículo no se agrega al carrito y recibe un mensaje de error. Revisé el código y parece estar correcto, por lo que no sé bien cuál podría ser el problema. ¿Puedes ayudarme? solucionar este problema? "Agregar al carrito" botón no funciona en el sitio web.
  • Realizar un razonamiento de varios pasos

    El razonamiento de varios pasos se basa en el paradigma ReAct (razonar + actuar), que permite a los LLM resolver tareas complejas con razonamiento de lenguaje natural. De forma predeterminada, la cantidad máxima de pasos es cinco.

    Por ejemplo:

    Entrada del usuario Dos pasos para generar la respuesta
    ¿Cuántos años después de su fundación, Google alcanzó los USD 1,000 millones en ingresos? Paso 1:
    [Pensamiento]: Necesito saber cuándo se fundó Google para luego consultar los ingresos.
    [Acto] Búsqueda: ¿Cuándo se fundó Google?[Observar los resultados de la búsqueda]: "1998"

    Paso 2:
    [Pensamiento]: Ahora necesito los ingresos anuales de Google desde 1998 y descubre cuándo superó los mil millones por primera vez.
    [Acción] Búsqueda: Ingresos de Google desde 1998
    [Observar los resultados de la búsqueda] Ingresos de Google en 1998, ingresos de Google en 1999...
    [Respuesta]: Google llegó a más de mil millones de USD ingresos en 2003[1], 5 años después de su fundación en 1998[2].

Clasificación de consultas

Las opciones de clasificación de consultas son identificar consultas adversas y no respuestas a buscar consultas. De forma predeterminada, las opciones de clasificación de consultas están desactivadas.

Para obtener más información acerca de búsquedas adversarias y sin respuesta, consulte Ignorar adversarios consultas y también Ignorar las búsquedas que no sean del resumen por lotes.

Funciones de la fase de búsqueda

Para la búsqueda, el método de respuesta tiene las mismas opciones que el método de búsqueda. Por ejemplo:

Funciones de la fase de respuesta

Durante la fase de respuesta, cuando se generan respuestas a partir de los resultados de la búsqueda, Puedes habilitar las mismas funciones que en el método de búsqueda. Por ejemplo:

Antes de comenzar

Según el tipo de app que tengas, completa los siguientes requisitos:

  • Si tienes una app de búsqueda estructurada o no estructurada, asegúrate de cumplir con los siguientes requisitos: se activó: Funciones avanzadas de LLM

  • Si tienes una app de búsqueda de sitios web, asegúrate de que las siguientes opciones estén activadas:

  • Si tienes una aplicación de búsqueda combinada (es decir, una aplicación que está conectada a más de un almacén de datos), comunícate con tu equipo de Cuentas de Google y solicítale que te agreguen a está en la lista de entidades permitidas de la API answer con la búsqueda combinada.

Búsqueda y respuesta (básica)

El siguiente comando muestra cómo llamar al método answer y obtener una respuesta generada y una lista de resultados de la búsqueda, con vínculos fuentes de datos.

Este comando solo muestra la entrada necesaria. Las opciones se dejan con sus valores predeterminados.

REST

Para realizar una búsqueda y obtener resultados con una respuesta generada, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"}
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Comandos de la fase de consulta

En esta sección, se muestra cómo especificar opciones para la fase de consulta de la llamada al método answer.

Búsqueda y respuesta (reformulación inhabilitada)

En el siguiente comando, se muestra cómo llamar al método answer y mostrar una respuesta generada y una lista de resultados de la búsqueda. La respuesta podría ser es diferente de la respuesta anterior porque la opción de reformulación está inhabilitada.

REST

Para buscar y obtener resultados con una respuesta generada sin aplicar la consulta reformulando la frase, haz lo siguiente:

  1. Ejecuta el siguiente comando curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "queryUnderstandingSpec": {
               "queryRephraserSpec": {
                  "disable": true
            }
        }
          }'
    
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: El ID de la app de Vertex AI Search.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Búsqueda y respuesta (especifica la cantidad máxima de pasos)

En el siguiente comando, se muestra cómo llamar al método answer y mostrar una respuesta generada y una lista de resultados de la búsqueda. La respuesta es es diferente de las respuestas anteriores porque la cantidad de pasos de reformulación un aumento de ese tamaño.

REST

Para buscar y obtener resultados con una respuesta generada que permite hasta cinco reformulaciones pasos, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "queryUnderstandingSpec": {
                "queryRephraserSpec": {
                    "maxRephraseSteps": MAX_REPHRASE
                 }
             }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".
    • MAX_REPHRASE: Es la cantidad máxima de pasos para reformular. El valor más alto permitido es 5. Si no se establece o se establece en un valor inferior a 1, el valor es el predeterminado, 1.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Cómo buscar y responder con la clasificación de consultas

El siguiente comando muestra cómo llamar al método answer para indaga si una consulta es adversaria, sin búsqueda de respuestas o ninguna de las dos.

La respuesta incluye el tipo de clasificación para la consulta, pero la respuesta en sí no se ve afectada por la clasificación. Si quieres cambiar el comportamiento de la respuesta según el tipo de consulta, puedes hacerlo en la fase de respuesta. Consulta Ignorar adversarios consultas y también Ignorar las búsquedas que no sean del resumen por lotes.

REST

Para determinar si una consulta es adversaria o no busca una respuesta, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "queryUnderstandingSpec": {
                "queryClassificationSpec": {
                    "types": ["QUERY_CLASSIFICATION_TYPE"]
                 }
             }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda. Por ejemplo, "hola".
    • QUERY_CLASSIFICATION_TYPE: Los tipos de consulta que deseas identificar: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY o ambos.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Comandos de la fase de búsqueda: Busca y responde con opciones de resultados de la búsqueda

Esta sección muestra cómo especificar opciones para la parte de la fase de búsqueda de la llamada de método answer, opciones como establecer la cantidad máxima de documentos mostrados, boosting y filtrado, y cómo obtener una respuesta cuando tú proporcionas tus propios resultados de la búsqueda.

En el siguiente comando, se muestra cómo llamar al método answer y especificar varias opciones para cómo se muestra el resultado de la búsqueda. (La columna los resultados son independientes de la respuesta).

REST

Para configurar varias opciones relacionadas con qué resultados de la búsqueda se muestran y cómo, haz lo siguiente:

  1. Ejecuta el siguiente comando curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
              "searchSpec": {
              "searchParams": {
                "maxReturnResults": MAX_RETURN_RESULTS,
                "filter": "FILTER",
                "boostSpec": BOOST_SPEC,
                "orderBy": "ORDER_BY",
                "searchResultMode": SEARCH_RESULT_MODE
               }
             }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?"
    • MAX_RETURN_RESULTS: Es la cantidad de resultados de la búsqueda que se mostrarán. El valor predeterminado es 10.
    • FILTER: El filtro especifica qué documentos. se consultan. Si los metadatos de un documento cumplen con la especificación del filtro, se consultará el documento. Para obtener más información, sintaxis, consulta Filtrar búsqueda genérica de datos estructurados o no estructurados.
    • BOOST_SPEC: La especificación de aumento te permite mejorar ciertos documentos en los resultados de la búsqueda, lo que puede afectar la respuesta. Para obtener más información, incluida la sintaxis de la especificación del boosting, consulta Mejorar los resultados de la búsqueda.
    • ORDER_BY: Es el orden en el que se muestran los documentos. Los documentos se pueden ordenar por un campo de una Documento . La expresión orderBy distingue mayúsculas de minúsculas. Si no se puede reconocer este campo, se muestra un INVALID_ARGUMENT que se devuelven.
    • SEARCH_RESULT_MODE: Especifica la búsqueda. modo de resultado: DOCUMENTS o CHUNKS. Para obtener más información, consulta Cómo analizar y dividir documentos y ContentSearchSpec. Este campo solo está disponible en la versión v1alpha de la API.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Comandos de la fase de respuesta

En esta sección, se muestra cómo especificar opciones específicas de la respuesta para la llamada al método answer.

Ignora las búsquedas adversas y las que no buscan respuestas

El siguiente comando muestra cómo evitar responder consultas adversas y consultas que no buscan respuesta cuando se llama al método answer.

REST

Para omitir responder consultas adversas o que no lo hacen, haz lo siguiente: lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "ignoreAdversarialQuery": true,
               "ignoreNonAnswerSeekingQuery": true
            }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Mostrar solo las respuestas relevantes

Vertex AI Search puede evaluar la relevancia de los resultados para una para cada búsqueda. Si no se determina que no hay resultados lo suficientemente relevantes, entonces de generar una respuesta a partir de resultados no relevantes o mínimamente relevantes, puedes elige mostrar una respuesta alternativa: “We do not have a summary for your query.

El siguiente comando muestra cómo devolver la respuesta de resguardo en el caso de resultados irrelevantes cuando se llama al método answer.

REST

Para mostrar una respuesta de resguardo si no se encuentran resultados relevantes, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "ignoreLowRelevantContent": true
            }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Especifica el modelo de respuesta

El siguiente comando muestra cómo cambiar la versión del modelo que se usa para generar respuestas.

Para obtener información sobre los modelos compatibles, consulta Versiones de modelos de generación de respuestas y ciclo de vida.

REST

Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "modelSpec": {
                  "modelVersion": "MODEL_VERSION",
               }
             }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
    • MODEL_VERSION: Es la versión del modelo que deseas usar para generar la respuesta. Para obtener más información, consulta Versiones y ciclo de vida del modelo de generación de respuestas.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Especifica un preámbulo personalizado

El siguiente comando muestra cómo configurar un preámbulo para la respuesta generada. R el preámbulo contiene instrucciones en lenguaje natural para personalizar la respuesta. Tú pueden solicitar personalizaciones como la longitud, el nivel de detalle y el estilo de los resultados. (como “simple”), el idioma de salida, el enfoque de la respuesta y el formato (como tablas, viñetas y XML). Por ejemplo, un preámbulo podría ser “Explícalo como si fueras un niño de diez años”.

El preámbulo puede tener un efecto significativo en la calidad de la una respuesta en particular. Para obtener información sobre qué escribir en los preámbulos y ejemplos de buenos preámbulos, consulta Acerca de los preámbulos personalizados.

REST

Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "promptSpec": {
                   "preamble": "PREAMBLE",
               }
            }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
    • PREAMBLE: Una instrucción de lenguaje natural para personalizar la respuesta. Por ejemplo, prueba show the answer format in an ordered list o give a very detailed answer.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Cómo incluir citas

El siguiente comando muestra cómo solicitar que se incluyan citas con el una respuesta en particular.

REST

Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "includeCitations": INCLUDE_CITATIONS
            }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda.
    • INCLUDE_CITATIONS: Especifica si se deben incluir los metadatos de cita en la respuesta. El valor predeterminado es false.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Establece el código de idioma de las respuestas

En el siguiente comando, se muestra cómo establecer el código de idioma de las respuestas.

REST

Para generar una respuesta con un modelo diferente al predeterminado, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "answerGenerationSpec": {
               "answerLanguageCode": "ANSWER_LANGUAGE_CODE"
               }
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search que usaste. que deseas consultar.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda.
    • ANSWER_LANGUAGE_CODE: Es un código de idioma para el una respuesta en particular. Usa las etiquetas de idioma definidas en BCP47: Etiquetas para identificar idiomas.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"                    # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"


def answer_query_sample(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.AnswerQueryResponse:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.ConversationalSearchServiceClient(
        client_options=client_options
    )

    # The full resource name of the Search serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_serving_config"

    # Optional: Options for query phase
    query_understanding_spec = discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec(
        query_rephraser_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryRephraserSpec(
            disable=False,  # Optional: Disable query rephraser
            max_rephrase_steps=1,  # Optional: Number of rephrase steps
        ),
        # Optional: Classify query types
        query_classification_spec=discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec(
            types=[
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.ADVERSARIAL_QUERY,
                discoveryengine.AnswerQueryRequest.QueryUnderstandingSpec.QueryClassificationSpec.Type.NON_ANSWER_SEEKING_QUERY,
            ]  # Options: ADVERSARIAL_QUERY, NON_ANSWER_SEEKING_QUERY or both
        ),
    )

    # Optional: Options for answer phase
    answer_generation_spec = discoveryengine.AnswerQueryRequest.AnswerGenerationSpec(
        ignore_adversarial_query=False,  # Optional: Ignore adversarial query
        ignore_non_answer_seeking_query=False,  # Optional: Ignore non-answer seeking query
        ignore_low_relevant_content=False,  # Optional: Return fallback answer when content is not relevant
        model_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.ModelSpec(
            model_version="gemini-1.5-flash-001/answer_gen/v2",  # Optional: Model to use for answer generation
        ),
        prompt_spec=discoveryengine.AnswerQueryRequest.AnswerGenerationSpec.PromptSpec(
            preamble="Give a detailed answer.",  # Optional: Natural language instructions for customizing the answer.
        ),
        include_citations=True,  # Optional: Include citations in the response
        answer_language_code="en",  # Optional: Language code of the answer
    )

    # Initialize request argument(s)
    request = discoveryengine.AnswerQueryRequest(
        serving_config=serving_config,
        query=discoveryengine.Query(text="What is Vertex AI Search?"),
        session=None,  # Optional: include previous session ID to continue a conversation
        query_understanding_spec=query_understanding_spec,
        answer_generation_spec=answer_generation_spec,
    )

    # Make the request
    response = client.answer_query(request)

    # Handle the response
    print(response)

    return response

Comandos para preguntas de seguimiento

Las preguntas adicionales son consultas de varios turnos. Después de la primera consulta en una sesión de seguimiento, la “gira” tener en cuenta las interacciones anteriores. Con los seguimientos, el método de respuesta también puede sugerir preguntas relacionadas, que los usuarios pueden elegir en lugar de ingresando sus propias preguntas de seguimiento.

Todas las funciones de respuesta y seguimiento descritas en las secciones anteriores, como citas, filtros, SafeSearch, ignorar determinados tipos de consultas y usar una el preámbulo para personalizar las respuestas se puede aplicar junto con las preguntas de seguimiento.

Ejemplo de una sesión de seguimiento

El siguiente es un ejemplo de una sesión con seguimientos. Supongamos que quieres sobre las vacaciones en México:

  • Paso 1:

    • Tú: ¿Cuál es la mejor época del año para vacacionar en México?

    • Respuesta con seguimiento: La mejor época para vacaciones en México es durante la temporada seca. de noviembre a abril.

  • Paso 2:

    • Tú: ¿Cuál es el tipo de cambio?

    • Responde con preguntas adicionales: USD 1 equivale a pesos mexicanos 17.65.

  • Paso 3:

    • Tú: ¿Cuál es la temperatura promedio en diciembre?

    • Respuesta con preguntas adicionales: La temperatura promedio varía de 21 a 26 °C. El promedio de Cancún es de ~27 °F.

Sin las preguntas adicionales, no se podría responder a la pregunta "¿Cuál es el tipo de cambio?", ya que la búsqueda normal no sabría que quieres el tipo de cambio de México. Del mismo modo, sin seguimientos, no habría el contexto necesario para darte temperaturas específicas para México.

Cuando preguntas "¿Cuál es el mejor momento del año para vacacionar en México?". Además de responder tu pregunta, la respuesta y los seguimientos pueden sugerirte preguntas que podrías hacer, como "¿Cuál es el mes más barato a las vacaciones en México?". y "¿Cuáles son los meses de turismo en México?".

Una vez que se habilita la función de preguntas relacionadas, las preguntas se muestran como cadenas en ConverseConversationResponse.

Acerca de las sesiones

Para comprender cómo funcionan los seguimientos en Vertex AI Search, necesitas para comprender las sesiones.

Una sesión se compone de consultas de texto que proporciona un usuario y respuestas que proporciona Vertex AI Search.

Estos pares de consulta y respuesta a veces se denominan turnos. En la ejemplo anterior, el segundo turno se compone de "¿Cuál es el tipo de cambio?" y "1 USD equivale a aproximadamente 17.65 pesos mexicanos".

Las sesiones se almacenan con la app. En la aplicación, una sesión está representada por el valor session recurso.

Además de contener los mensajes de consulta y respuesta, la sesión recurso tiene:

  • Un nombre único (el ID de la sesión)

  • Un estado (en curso o completado).

  • Un seudo-ID del usuario, que es un ID de visitante que realiza un seguimiento del usuario. Se puede asignar de forma programática.

  • Una hora de inicio y una de finalización.

  • Un turno, que es un par de respuestas y consultas.

Almacena información de la sesión y obtén respuestas

Puedes usar la línea de comandos para generar respuestas de búsqueda y almacenarlas junto con cada búsqueda en una sesión.

REST

Para usar la línea de comandos con el objetivo de crear una sesión y generar respuestas desde el la entrada del usuario, sigue estos pasos:

  1. Especifica la app en la que quieres almacenar la sesión:

    curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions" \
      -d '{
            "userPseudoId": "USER_PSEUDO_ID"
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.

    • APP_ID: Es el ID de la app de Vertex AI Search.

    • USER_PSEUDO_ID: Es un identificador único para hacer un seguimiento de un visitante de búsqueda. Por ejemplo, puede implementarlo con una cookie HTTP que identifica de forma exclusiva a un visitante en un solo dispositivo.

    Ejemplo de comando y resultado

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
    -H "Content-Type: application/json"
    "https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/sessions"
    -d '{
    "userPseudoId": "test_user"
    }'
    
    { "name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943", "state": "IN_PROGRESS", "userPseudoId": "test_user", "startTime": "2024-09-13T18:47:10.465311Z", "endTime": "2024-09-13T18:47:10.465311Z" }
  2. Toma nota del ID de sesión y los números al final del campo name: en la respuesta JSON. En el resultado del ejemplo, el ID es 5386462384953257772. Necesitarás este ID en el siguiente paso.

  3. Genera una respuesta y agrégala a una sesión en tu app:

    curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:answer" \
      -d '{
            "query": { "text": "QUERY"},
            "session": "projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions/SESSION_ID",
              "searchSpec":{ "searchParams": {"filter": "FILTER"} }
    }'
    
    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: El ID de la app de Vertex AI Search.
    • QUERY: Es una cadena de texto libre que contiene el pregunta o búsqueda.
    • SESSION_ID: Es el ID de la sesión que creaste en el paso 1. Estos son los dígitos al final de la name:, tal como se indica en el paso 2. Para una sesión, usa el mismo ID de sesión en cada turno.
    • FILTER: Es un campo de texto para filtrar la búsqueda. con una expresión de filtro. El valor predeterminado es una string vacía. El la forma en que creas el filtro varía en función de si tienes datos no estructurados con metadatos, datos estructurados o datos del sitio web. Para obtener más información, consulta Filtrar búsqueda genérica de datos estructurados o no estructurados y Filter de la búsqueda en el sitio web.

    Ejemplo de comando y resultado

    curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
    -H "Content-Type: application/json"
    "https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer"
    -d '{
    "query": { "text": "Compare bigquery with spanner database?"},
    "session":  "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
    }'
        
    { "answer": { "name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072", "state": "SUCCEEDED", "answerText": "BigQuery and Spanner are both powerful tools that can be used together to handle transactional and analytical workloads. Spanner is a fully managed relational database optimized for transactional workloads, while BigQuery is a serverless data warehouse designed for business agility. Spanner provides seamless replication across regions in Google Cloud and processes over 1 billion requests per second at peak. BigQuery analyzes over 110 terabytes of data per second. Users can leverage federated queries to read data from Spanner and write to a native BigQuery table. \n", "steps": [ { "state": "SUCCEEDED", "description": "Rephrase the query and search.", "actions": [ { "searchAction": { "query": "Compare bigquery with spanner database?" }, "observation": { "searchResults": [ { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/ecc0e7547253f4ca3ff3328ce89995af", "uri": "https://cloud.google.com/blog/topics/developers-practitioners/how-spanner-and-bigquery-work-together-handle-transactional-and-analytical-workloads", "title": "How Spanner and BigQuery work together to handle transactional and analytical workloads | Google Cloud Blog", "snippetInfo": [ { "snippet": "Using Cloud \u003cb\u003eSpanner\u003c/b\u003e and \u003cb\u003eBigQuery\u003c/b\u003e also allows customers to build their \u003cb\u003edata\u003c/b\u003e clouds using Google Cloud, a unified, open approach to \u003cb\u003edata\u003c/b\u003e-driven transformation ...", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d7e238f73608a860e00b752ef80e2941", "uri": "https://cloud.google.com/blog/products/databases/cloud-spanner-gets-stronger-with-bigquery-federated-queries", "title": "Cloud Spanner gets stronger with BigQuery-federated queries | Google Cloud Blog", "snippetInfo": [ { "snippet": "As enterprises compete for market share, their need for real-time insights has given rise to increased demand for transactional \u003cb\u003edatabases\u003c/b\u003e to support \u003cb\u003edata\u003c/b\u003e ...", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/e10a5a3c267dc61579e7c00fefe656eb", "uri": "https://cloud.google.com/blog/topics/developers-practitioners/replicating-cloud-spanner-bigquery-scale", "title": "Replicating from Cloud Spanner to BigQuery at scale | Google Cloud Blog", "snippetInfo": [ { "snippet": "... \u003cb\u003eSpanner data\u003c/b\u003e into \u003cb\u003eBigQuery\u003c/b\u003e for analytics. In this post, you will learn how to efficiently use this feature to replicate large tables with high throughput ...", "snippetStatus": "SUCCESS" } ] }, ... { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/8100ad36e1cac149eb9fc180a41d8f25", "uri": "https://cloud.google.com/blog/products/gcp/from-nosql-to-new-sql-how-spanner-became-a-global-mission-critical-database", "title": "How Spanner became a global, mission-critical database | Google Cloud Blog", "snippetInfo": [ { "snippet": "... SQL \u003cb\u003evs\u003c/b\u003e. NoSQL dichotomy may no longer be relevant." The \u003cb\u003eSpanner\u003c/b\u003e SQL query processor, while recognizable as a standard implementation, has unique ...", "snippetStatus": "SUCCESS" } ] } ] } } ] } ] }, "session": { "name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943", "state": "IN_PROGRESS", "userPseudoId": "test_user", "turns": [ { "query": { "queryId": "projects/123456/locations/global/questions/741830", "text": "Compare bigquery with spanner database?" }, "answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072" } ], "startTime": "2024-09-13T18:47:10.465311Z", "endTime": "2024-09-13T18:47:10.465311Z" }, "answerQueryToken": "NMwKDAjFkpK3BhDU24uZAhIkNjZlNDIyZWYtMDAwMC0yMjVmLWIxMmQtZjQwMzA0M2FkYmNj" }
  4. Repite el paso 3 para cada consulta nueva en la sesión.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def create_session(
    project_id: str,
    location: str,
    engine_id: str,
    user_pseudo_id: str,
) -> discoveryengine.Session:
    """Creates a session.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
        user_pseudo_id: A unique identifier for tracking visitors. For example, this
          could be implemented with an HTTP cookie, which should be able to
          uniquely identify a visitor on a single device.
    Returns:
        discoveryengine.Session: The newly created Session.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    session = client.create_session(
        # The full resource name of the engine
        parent=f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}",
        session=discoveryengine.Session(user_pseudo_id=user_pseudo_id),
    )

    # Send Session name in `answer_query()`
    print(f"Session: {session.name}")
    return session

Obtén una sesión del almacén de datos

En el siguiente comando, se muestra cómo llamar al método get y obtener una sesión del almacén de datos.

REST

Para obtener una sesión de un almacén de datos, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions/SESSION_ID"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search.
    • SESSION_ID: El ID de la sesión que deseas obtener.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def get_session(
    project_id: str,
    location: str,
    engine_id: str,
    session_id: str,
) -> discoveryengine.Session:
    """Retrieves a session.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
        session_id: The ID of the session.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the session
    name = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/sessions/{session_id}"

    session = client.get_session(name=name)

    print(f"Session details: {session}")
    return session

Cómo borrar una sesión de la app

El siguiente comando muestra cómo llamar al método delete y borrar una sesión del almacén de datos.

De forma predeterminada, las sesiones que tienen más de 60 días se borran automáticamente. Sin embargo, si quieres borrar una sesión específica, por ejemplo, si incluye contenido sensible, usa esta llamada a la API para borrarlo.

REST

Para borrar una sesión de una app, haz lo siguiente:

  1. Ejecuta el siguiente comando curl:

    curl -X DELETE -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions/SESSION_ID"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search.
    • SESSION_ID: El ID de la sesión que deseas borrar.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def delete_session(
    project_id: str,
    location: str,
    engine_id: str,
    session_id: str,
) -> None:
    """Deletes a session.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
        session_id: The ID of the session.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the session
    name = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/sessions/{session_id}"

    client.delete_session(name=name)

    print(f"Session {name} deleted.")

Cómo actualizar una sesión

Existen varios motivos por los que podrías querer actualizar una sesión. Por ejemplo: para realizar una de las siguientes acciones:

  • Cómo marcar una sesión como completada
  • Cómo combinar los mensajes de una sesión en otra
  • Cómo cambiar el seudo-ID de un usuario

El siguiente comando muestra cómo llamar al método patch y actualizar una sesión en el almacén de datos.

REST

Para actualizar una sesión desde una app, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X PATCH \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions/SESSION_ID?updateMask=state" \
      -d '{
            "state": "NEW_STATE"
          }'
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search.
    • SESSION_ID: El ID de la sesión que deseas actualizar.
    • NEW_STATE: Es el valor nuevo del estado, por ejemplo, IN_PROGRESS.

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine
from google.protobuf import field_mask_pb2


def update_session(
    project_id: str,
    location: str,
    engine_id: str,
    session_id: str,
) -> discoveryengine.Session:
    """Updates a session.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
        session_id: The ID of the session.
    Returns:
        discoveryengine.Session: The updated Session.
    """
    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the session
    name = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/sessions/{session_id}"

    session = discoveryengine.Session(
        name=name,
        state=discoveryengine.Session.State.IN_PROGRESS,  # Options: IN_PROGRESS, STATE_UNSPECIFIED
    )

    # Fields to Update
    update_mask = field_mask_pb2.FieldMask(paths=["state"])

    session = client.update_session(session=session, update_mask=update_mask)
    print(f"Updated session: {session.name}")
    return session

Cómo mostrar todas las sesiones

El siguiente comando muestra cómo llamar al método list y y enumerar las sesiones del almacén de datos.

REST

Para enumerar las sesiones de una app, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X GET \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: El ID de la app de Vertex AI Search.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def list_sessions(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.ListSessionsResponse:
    """Lists all sessions associated with a data store.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
    Returns:
        discoveryengine.ListSessionsResponse: The list of sessions.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the engine
    parent = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}"

    response = client.list_sessions(
        request=discoveryengine.ListSessionsRequest(
            parent=parent,
            filter='state="IN_PROGRESS"',  # Optional: Filter requests by userPseudoId or state
            order_by="update_time",  # Optional: Sort results
        )
    )

    print("Sessions:")
    for session in response.sessions:
        print(session)

    return response

Muestra la lista de sesiones de un usuario

El siguiente comando muestra cómo llamar al método list para Enumera las sesiones asociadas con un usuario o visitante.

REST

Para obtener una lista de las sesiones asociadas con un usuario o visitante, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X GET \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions?filter=userPseudoId=USER_PSEUDO_ID"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search.
    • USER_PSEUDO_ID: Es el pseudoID del usuario. de las sesiones que quieras enumerar.

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def list_sessions(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.ListSessionsResponse:
    """Lists all sessions associated with a data store.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
    Returns:
        discoveryengine.ListSessionsResponse: The list of sessions.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the engine
    parent = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}"

    response = client.list_sessions(
        request=discoveryengine.ListSessionsRequest(
            parent=parent,
            filter='state="IN_PROGRESS"',  # Optional: Filter requests by userPseudoId or state
            order_by="update_time",  # Optional: Sort results
        )
    )

    print("Sessions:")
    for session in response.sessions:
        print(session)

    return response

Cómo mostrar una lista de sesiones de un usuario y un estado

En el siguiente comando, se muestra cómo llamar al método list para enumerar las sesiones en un estado determinado para un usuario en particular.

REST

Para enumerar las sesiones de un usuario que están abiertas o cerradas y están asociadas a un determinado usuario o visitante, haz lo siguiente:

  1. Ejecuta el siguiente comando de curl:

    curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/sessions?filter=userPseudoId=USER_PSEUDO_ID%20AND%20state=STATE"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud.
    • APP_ID: Es el ID de la app de Vertex AI Search.
    • USER_PSEUDO_ID: Es el ID seudónimo del usuario cuyas sesiones deseas enumerar.
    • STATE: Es el estado de la sesión: STATE_UNSPECIFIED (cerrado o desconocido) o IN_PROGRESS (abierto).

Python

Para obtener más información, consulta la API de Python de Vertex AI Agent Builder documentación de referencia.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine


def list_sessions(
    project_id: str,
    location: str,
    engine_id: str,
) -> discoveryengine.ListSessionsResponse:
    """Lists all sessions associated with a data store.

    Args:
        project_id: The ID of your Google Cloud project.
        location: The location of the app.
        engine_id: The ID of the app.
    Returns:
        discoveryengine.ListSessionsResponse: The list of sessions.
    """

    client = discoveryengine.ConversationalSearchServiceClient()

    # The full resource name of the engine
    parent = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}"

    response = client.list_sessions(
        request=discoveryengine.ListSessionsRequest(
            parent=parent,
            filter='state="IN_PROGRESS"',  # Optional: Filter requests by userPseudoId or state
            order_by="update_time",  # Optional: Sort results
        )
    )

    print("Sessions:")
    for session in response.sessions:
        print(session)

    return response